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     BSTRACT

Prenatal programming refers to the fact that insults during pre- and early postnatal life 
can have long-term consequences on the health and performance. In diary cattle, physiological 
conditions, such as maternal body growth, milk yield and parity, and environmental conditions 
during gestation can create a suboptimal environment for the developing fetus. As a consequence, 
adaptations of the placental and newborn phenotype take place. In addition, potential long-term 
effects of prenatal programming influence body growth, fertility, milk yield and longevity in 
dairy cows.  These results suggest that the current management systems may pose a risk for the 
long-term health and performance of dairy cattle. Hence, in management practices, all pre- and 
postnatal aspects should carefully be considered in order to raise healthier and more productive 
dairy cows. 

SAMENVATTING

Prenatale programmering verwijst naar het feit dat invloeden tijdens het pre- en vroeg-postnatale 
leven gevolgen kunnen hebben voor de gezondheid en de prestaties op lange termijn. Fysiologische 
processen bij melkvee, zoals maternale groei, melkgift en pariteit, en omgevingsinvloeden tijdens de 
dracht kunnen een suboptimale omgeving creëren voor de zich ontwikkelende foetus. Deze resulteren 
in fenotypische aanpassingen van de placenta en van het pasgeboren kalf. Bovendien kan prenatale 
programmering op lange termijn een effect hebben op de groei, de vruchtbaarheid, de melkgift en de 
levensduur van melkkoeien. Deze resultaten suggereren dat de huidige managementsystemen een risico 
kunnen vormen voor de gezondheid en prestaties van melkvee op lange termijn. Daarom moeten de 
managementpraktijken alle pre- en postnatale aspecten zorgvuldig in overweging nemen om gezondere 
en productievere melkkoeien te fokken. 
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INTRODUCTION

The primary goal of a dairy farmer is to have his 
cows produce as much milk as possible, without ha-
ving disastrous effects on their fertility, health and 
longevity. In the early 1900s, the first steps were taken 
to increase productivity in dairy cows by recording 
the milk yields of cows and registering pedigrees. 
The primary aim was to breed towards genetically 
improved livestock. Since then, a rapid evolution in 
genetic selection towards high milk yield has taken 
place (Weigel et al., 2017). However, heifers with a 
genetic potential for high milk yield do not always 
turn out to be the highest yielding cows, as the phe-
notype is a result of both genotype and environment. 
Hence, the impact of management on the performance 

of cows has gained interest. In this respect, more and 
more attention has been paid to rearing strategies, to 
enable genetically valuable heifers to live up to the 
expectations. Recently, studies have demonstrated that 
the prenatal life of calves is important, as prenatal 
conditions can play a role in the ‘developmental pro-
gramming’ of later health and performance (Astiz et 
al., 2014; Pinedo and De Vries, 2017).

‘Developmental programming’ refers to the fact 
that insults during early life can cause specific adap-
tations in the tissues and metabolism of an organism, 
which ‘program’ its further growth and development. 
However, the specific physiological outcome is deter-
mined by the timing, duration and exact nature of the 
insult (Bertram and Hanson, 2001). Environmental 
factors are believed to have a larger impact when they 
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take place during critical stages of early development, 
such as the prenatal and pre-weaning period. Especi-
ally prenatal challenges and their effect on fetal de-
velopment have been studied, usually referred to as 
‘intrauterine programming’ (Fowden et al., 2006a).

PRENATAL  PROGRAMMING  IN  HUMANS

In humans, many findings on intrauterine program-
ming originate from records during the Dutch hunger 
winter of 1944-1945. A German blockade in the Ne-
therlands cut off food supplies, causing famine in a 
previously well-nourished population. As women con-
tinued to conceive and give birth during the famine, 
the effects of maternal undernutrition during different 
stages of pregnancy could be studied in their offspring 
(Roseboom et al., 2011b). Initially, direct effects of 
prenatal undernutrition were observed: newborn ba-
bies were born unusually small and were presented 
with an increased insulin sensitivity (Bazaes et al., 
2003; Roseboom et al., 2011a). These phenotypic alte-
rations are the result of an ‘intrauterine growth restric-
tion’ (IUGR) (Stein et al., 1995; Painter et al., 2005). 
By lowering its metabolic rate and overall growth, the 
fetus attempts to enhance its survival during periods 

of prenatal undernutrition (Kwon and Kim, 2017). 
Later studies, however, revealed potentially negative 
consequences of these adaptations on the longer term 
(Figure1). The high insulin sensitivity in small infants 
is often associated with an accelerated postnatal body 
growth, referred to as ‘catch-up growth’ (Gafni and 
Baron, 2000; Ibáñez et al., 2006), but also results in 
early obesity and peripheral insulin resistance (Soto et 
al., 2003; Ibáñez et al., 2006). Hence, IUGR has been 
linked with an increased risk of diabetes during later 
life, but also other health problems like elevated blood 
pressure, cardiovascular disease and even reproductive 
disorders (Ibáñez et al., 1998; Roseboom et al., 2001; 
Ibánez et al., 2008; Mericq et al., 2017). The afore-
mentioned findings have led to the ‘Developmental 
Origin of Health and Disease (DOHaD)’ hypothesis 
(Hales et al., 1991), stating that besides genotype, the 
prenatal and early postnatal environment influences 
the development of chronic diseases.  

More recently, studies in human medicine have 
shown other prenatal factors – besides maternal nutri-
tion – to affect the performance of the offspring. Gene-
rally, prenatal exposure to any condition or challenge 
that may impact the physical integrity and survival of 
living organisms – also called ‘stress’ – can induce an 
adverse intrauterine environment, with implications in 

Figure 1. Causes and consequences of developmental programming in humans.
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terms of developmental programming (Entringer et al., 
2010). In addition to maternal nutrition and physical 
health, maternal lifestyle, i.e. exercise level, smoking 
and alcohol consumption, and mental health during 
pregnancy have been demonstrated to be important for 
the offspring’s health (Syme et al., 2010; Lewis et al., 
2015; Mourtakos et al., 2015; Godfrey et al., 2017). Fi-
nally, environmental factors have been demonstrated 
to contribute to the process of developmental program-
ming. Multiple studies have shown an effect of birth 
month on disease risk (Vassallo et al., 2010; Ambrosi 
et al., 2012) and longevity (Flouris et al., 2009; Ga-
vrilov and Gavrilova, 2011), with most researchers 
agreeing on the fact that people born during autumn 
have an advantage.

PRENATAL   PROGRAMMING   IN   DAIRY 
CATTLE

In dairy cows, the optimization of management 
systems has resulted in an enormous evolution in milk 
yield during the last fifty years. A lot of attention 
has been paid to feeding strategies, providing cows 
with high quality roughages and well-balanced rati-
ons. Hence, undernutrition – defined as not having 
enough food – is a rare or even non-existing phe-
nomenon in modern dairy cattle. However, current 
management systems do impose a challenge for fetal 
development. Dairy farmers breed their young stock 
at a young age in order to have a first calf at a maxi-
mum of 24 months. Subsequently, cows are expected 
to calve at intervals no longer than 385 to 400 days. 
This implies dairy cows to be rather atypical because 
they have to manage the compatibility of (early) ge-
station with continued growth or the production of 
large quantities of milk. Continued growth and the 
synthesis and secretion of milk are known to be highly 
demanding in terms of nutrient needs. Hence, rather 
than being an absolute shortage of energy substrates 
per se, this metabolic priority for growth and lactation 
might generate adverse conditions for the unborn calf, 
with potential long-term consequences on its postnatal 
health, performance and longevity.

Continued growth in nulliparous heifers

To assure a high level of milk production, heifers 
should be raised to weigh 350-375 kg at 15 months 
of age, the age at which they should become preg-
nant in order to allow calving at 24 months (Wathes 
et al., 2014). As heifers have only reached 55% of 
their mature size at that time, a large part of their 
body growth takes place during their first gestation 
(NRC, 2001). Hence, the normal hierarchy of nutrient 
partitioning between maternal body growth and fetal 
growth may be altered (Wallace et al., 2006). In sheep, 
for example, there is a general consensus that overnu-
trition during gestation in adolescent ewes gives rise 

to a lighter progeny, while the dam generally experi-
ences a significant increase in body condition. In this 
paradigm, rapid maternal growth results in placental 
growth restriction and often premature delivery of 
low birth weight lambs (Wallace et al., 2006). As 
dairy farmers are currently stimulated to maximize 
daily growth in their young stock, the rapid growth in 
pregnant dairy heifers is believed to create a similar 
condition as in adolescent sheep, with consequences 
for the developing placenta and fetus.

High milk yield in multiparous cows

In multiparous cows, heavily selected for milk pro-
duction, the lactating mammary gland has a much 
higher requirement for nutrients than the gravid uterus 
(Bauman and Currie, 1980). Hence, lactation during 
gestation leads to a significant ‘loss’ of nutrients (like 
proteins and glucose) for the fetus, because these are 
diverted towards the udder instead of the gravid ute-
rus. Kamal et al. (2014) described that dairy cows, on 
average, produce 6,193 kg milk during their 278-day 
gestation. This implies that the calf developing in utero 
in the lactating cow, ‘misses’ in total 446 kg glucose 
(on average 72 g glucose per kg milk produced) and 
217 kg proteins compared with a calf developing in a 
non-lactating dam. However, high milk production per 
se is not expected to be the only cause of negative ef-
fects on the developing fetus. The actual energy status 
of the dam, being the final result of the cow’s body 
condition score, level of dry matter intake and milk 
production, might even be a more important influen-
cing factor (Senosy et al., 2012; Kamal et al., 2014). 

CONSEQUENCES  OF   PRENATAL  PRO-
GRAMMING  IN  DAIRY  CATTLE

Recent studies have described both short- and long-
term effects of prenatal programming in dairy cattle, 
which are elaborated below. 

Placenta and newborn calf 

In placental mammals, a functional placenta is cru-
cial for the development of the fetus, as it is the organ 
through which respiratory gases, nutrients and wastes 
are exchanged between the maternal and fetal systems. 
In ruminants, a cotyledonary placenta is seen. The 
fetal placenta attaches to discrete sites on the uterine 
wall (called caruncles) via chorionic villi in areas ter-
med cotyledons. The caruncular–cotyledonary unit 
is called a placentome and is the primary functional 
area of physiological exchange between mother and 
fetus (Vonnahme et al., 2007; Funston et al., 2010). 
Placental development responds to both fetal signals 
of nutrient demand and maternal signals of nutrient 
availability and, by adapting its phenotype, can regu-
late the distribution of available resources (Fowden et 
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al., 2006b; Fowden and Moore, 2012). In a previous 
study by the authors on fetal membranes in Holstein 
Friesian (HF) and Belgian Blue (BB) cattle, parity 
of the dam and birth season were revealed to affect 
the placental phenotype (Van Eetvelde et al., 2016). 
More specifically, two adaptive mechanisms are seen, 
i. e. an increase in number of cotyledons (in growing 
BB dams) and an increase in cotyledonary surface (in 
lactating HF cows and summer placentas). Studies 
in sheep have shown similar results, with a larger 
cotyledon number (Heasman et al., 1999) and an in-
creasing proportion of fetal tissue (Steyn et al., 2001) 
in placentas of nutrient-restricted ewes. This indicates 
that maternal body growth, maternal milk yield and 
high ambient temperatures create a ‘stress’-situation 
for the developing conceptus, comparable to nutrient 
restriction. As a consequence, the placenta adapts its 
phenotype in order to maintain fetal growth (Steyn et 
al., 2001). 

Along with the placental adaptations, prenatal 
influencers have been shown to induce phenotypic 
adaptations in newborn dairy calves. High ambient 
temperatures and high maternal milk yield during 
gestation have been associated with a reduced birth 
weight (Kamal et al., 2014). In dairy cattle, low birth 
weights have been described to be one of the risk 
factors for an increased incidence of unexplained still-
birth (Berglund et al., 2003; Windeyer et al., 2014). 
Hence, calves born during hotter months and/or born 
out of high-yielding cows might be at a higher risk for 

early morbidity and mortality. Moreover, shorter dry 
periods have also been associated with the birth of 
smaller calves (Kamal et al., 2014). This indicates that 
especially in cows selected for great milk yield and 
high persistency – resulting in a shorter dry period – a 
further negative effect on the developing fetus is ex-
pected, with potential repercussions for their survival 
and health. In addition to the reduced birth weights, lo-
wer insulin levels are seen in calves born during sum-
mer, indicating an increased insulin sensitivity (Kamal 
et al., 2015; Van Eetvelde et al. 2017). Furthermore, 
the insulin levels at birth have been shown to be ne-
gatively associated with ambient temperatures at the 
end of gestation (Van Eetvelde et al., 2017) (Figure 2). 
Similar results have also been described in crossbree-
ding studies in horses. While ‘restricted’ foals have 
lower insulin levels, higher insulin levels are seen in 
‘overgrown’ foals (Forhead et al., 2004; Peugnet et 
al., 2014). 

Hence, it can concluded that challenges in terms of 
nutrient supply to the fetus (increase or decrease) lead 
to adaptations not only to the placenta but also to the 
phenotype of the neonatus and its metabolism. Ho-
wever, the underlying mechanism of these metabolic 
alterations remains largely unknown. Furthermore, es-
pecially in cattle and horses, it is not clear yet whether 
and how these metabolic adaptations persist in later 
life and could be responsible for adverse outcomes on 
the long term.

Figure 2. Relation between glucose and insulin levels and the environmental temperature at birth. The left axis 
presents the average glucose (mMol/L) and insulin (mU/L) levels of the calves by the month of birth. On the right 
axis, the average ambient temperature at the birth month is shown. Despite similar glucose concentrations, insulin 
concentrations were significantly negatively correlated with temperature at birth (Van Eetvelde et al., 2017). 
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Catch-up growth, adiposity and fertility

While body growth in calves is largely depen-
dent on the feeding strategy, it is also related to birth 
weight. When fed a conventional limited diet, a mo-
derate growth rate of calves (independent of the cal-
ves’ birth weight) has been described, preventing 
low-weight calves to catch-up with their high-weight 
counterparts (Swali and Wathes, 2006; Brickell et al., 
2009b). However, when ad-libitum feeding is applied, 
a significant increase in body weight is seen compared 
to limited fed calves (Maccari et al., 2015). Further-
more, when applying high feed levels, e.g. by automa-
tic milk-feeding, a negative association between size 
at birth and growth rate during the first months of life 
has been reported (Lundborg et al., 2003; Svensson 
and Liberg, 2006). This implies that in the smallest 
calves, which have suffered from IUGR, a compen-
satory growth or ‘catch-up growth’ is seen, which 
is further accentuated when high milk regimes are 
applied. Although this rapid postnatal growth might 
seem beneficial, it has been shown to result in a higher 
accretion of fat than lean mass (Ford et al., 2007). 
This might be explained by the fact that the number of 
muscle fibers is set at birth and cannot increase post-
natally (Greenwood et al., 2000). Hence, when sub-

optimal prenatal conditions have resulted in a reduced 
intrauterine muscle development, this is very likely 
to have consequences on the long-term body growth 
(Long et al., 2009). Zhu et al. (2006) showed a redu-
ced muscle mass and altered muscle fiber distribution 
in the offspring of nutrient-restricted ewes, resulting 
in a reduced lean tissue growth and predisposition for 
adiposity during early life (Greenwood et al., 2000). In 
dairy cattle, catch-up growth has been shown to result 
in a slightly higher body weight at calving, but mainly 
a larger weight loss after the first parturition (Swali 
and Wathes, 2007). This may indicate a greater degree 
of body tissue mobilization, with a potentially incre-
ased risk of metabolic disorders around parturition (De 
Koster and Opsomer, 2013). In addition, fast-growing 
heifers, despite being younger at first breeding, have 
been shown to need more inseminations to become 
pregnant (Brickell et al., 2009a). These results show 
remarkable similarities with human studies on IUGR 
children, associating a small birth size and rapid post-
natal growth with increased adiposity and negative 
effects on later fertility and health (de Zegher et al., 
2017).

Whether intrauterine programming results in a po-
sitive or a negative outcome, is believed to be largely 
determined by the ‘match’ or ‘mismatch’ between the 

Figure 3. Hypothetical model on how the interaction between the pre- and postnatal environment may affect the 
phenotype of dairy cattle. If the pre- and postnatal environment match, the fetal adaptations are hypothesized to 
enhance the performance of the cow. In contrast, a mismatch between the pre- and postnatal environment might have 
detrimental effects on health, fertility and lifespan (Van Eetvelde and Opsomer, 2017).
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intrauterine and postnatal environment. The ‘thrifty 
phenotype hypothesis’ states that a poor prenatal en-
vironment (due to maternal undernutrition or other 
‘stress’ factors) can induce permanent changes in the 
metabolism of the fetus, preparing it for similar condi-
tions after birth (Hales and Barker, 2001). When res-
tricted feeding is applied postnatally, hence creating a 
‘match’ with the prenatal environment, the offspring 
benefits from its adapted phenotype. However, when 
there is an abundance of nutrients in the postnatal life, 
a ‘mismatch’ between the pre- and postnatal life may 
develop, with potential detrimental consequences for 
the calf’s future health and performance (Figure 3). 
However, in the majority of the cases, it is difficult 
to distinguish the specific effects of the pre- versus 
postnatal environment. Especially the effect of a rapid 
postnatal growth per se (irrespective of birth weight) 
on the adult phenotype is difficult to assess, as it is 
in most cases preceded by a reduced prenatal growth 
(Jimenez-Chillaron and Patti, 2007). Studies in mice 
however, have provided evidence for the fact that 
early postnatal catch-up growth is the key risk factor 
for metabolic problems during later life: while mice 
with a low birth weight exhibiting postnatal catch-up 
growth had a higher risk to develop obesity and diabe-
tes, prevention of postnatal catch-up growth increased 
metabolic health and lifespan (Bieswal et al., 2006). 
Hence, the accelerated growth often observed after 
IUGR may be more detrimental than the intrauterine 
adaptations per se (Singhal and Lucas, 2004). Indeed, 
human studies have shown that a lower nutrient intake 
and slower growth early in postnatal life (irrespective 
of birth size) have beneficial effects on later health 
(Singhal et al., 2003). 

Based on the striking similarities between results of 
studies done in dairy cattle and those reported in hu-
man medicine, the human “thrifty phenotype” model 
(Hales and Barker, 2001), should stimulate to critically 
assess the potential long-term consequences of the cur-
rently applied management system. As heifer rearing 
is a major cost for a dairy farmer, the aim is to shorten 
the non-productive life of a heifer by increasing early 
body growth and thus decreasing age at first calving 
(Ettema and Santos, 2004; Bach and Ahedo, 2008). 
As early body weight accretion is most efficient (Bach 
and Ahedo, 2008), dairy farmers have been stimulated 
to maximize the growth of their calves during the first 
months of life, especially during the pre-weaning pe-
riod. Furthermore, enhanced liquid feeding has shown 
promising results on short-term performance, in parti-
cular on milk yield during first lactation (Shamay et al., 
2005; Moallem et al., 2010). However, little is known 
about the long-term effects of this ‘accelerated fee-
ding’ on later fertility, metabolic health and lifespan. 
Following the ‘thrifty phenotype hypothesis’, the en-
hanced liquid feeding as currently used in pre-weaned 
calves, might accentuate the mismatch between the 
environment for which the offspring is prepared and 
the one in which it is actually born, which may have 
long-term deleterious consequences.

Milk yield and longevity 

Studies on the performance of dairy cattle have 
revealed that, besides age and weight of the heifer 
at first parturition, multiple prenatal factors are as-
sociated with the amount of milk produced during 
first lactation. Most studies agree on the fact that a 
higher parity of the dam is associated with a reduced 
performance of the daughter. Older dams have been 
shown to produce offspring with a lower milk yield 
during their first, second and third lactations (Banos 
et al., 2007; Berry et al., 2008; González-Recio et 
al., 2012; Van Eetvelde et al., 2020a). Furthermore, 
maternal milk yield during gestation has been shown 
to affect offspring longevity, with a reduced lifespan 
in daughters born out of mothers that were lactating 
while pregnant (González-Recio et al., 2012). Re-
cently, the authors performed a study on dairy cows 
that had reached a threshold life time milk production 
of 100,000 kg. In this study, the authors aimed to find 
intrinsic cow factors that are associated with the ability 
to combine a long lifespan with a high functionality. In 
accordance with previous studies, higher parity of the 
dam was confirmed to negatively affect the offspring’s 
performance, as daughters of high-parity cows were 
less likely to reach a life time milk yield of 100,000 
kg (Van Eetvelde et al., 2020b). 

Although the aforementioned studies indicate ma-
ternal factors to be important for long-term perfor-
mance of the offspring, it is hard to detach the direct 
effect of high maternal milk yield from the effect of 
maternal age/parity in multiparous dairy cows. The 
higher genetic merit in younger dams might be one 
of the reasons why they give birth to more productive 
daughters, but this can hardly be the single cause. Af-
ter all, genetic improvement in milk yield is conside-
red to be slow (1% of the mean per year  (Brotherstone 
and Goddard, 2005)) and studies were only performed 
during a limited time period. Hence, the recorded ef-
fects of maternal age are larger than can be expected 
from genetic improvement only (Astiz et al., 2014) 
and need further exploration. The results on the effect 
of maternal age seem similar to human studies, sho-
wing maternal ageing to be associated with placental 
dysfunction (Lean et al., 2017) and a reduced fitness of 
the offspring (Cardwell et al., 2010). However, there 
is a fundamental difference between late childbearing 
women and multiparous dairy cows, as these cows 
conceived their first calf at a young age. Hence, the 
effect of maternal age needs to be separated from the 
effect of parity to draw further conclusions. It has been 
suggested that in multiparous cows, the negative effect 
on the fetus might be caused by changes in its meta-
bolic environment (Fuerst-Waltl et al., 2004; Astiz et 
al., 2014). This implies that parity might have a higher 
impact than age of the dam, as the former represents 
the previous number of parturitions and thus periods 
of metabolic stress the cow – and her reproductive 
organs – have been exposed to. Future research should 
therefore be focussed on the metabolic health of the 
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cow, rather than on her milk yield, age or parity, to 
identify the underlying mechanism(s) responsible for 
the programming of the fetus.

In addition to maternal effects, seasonal effects on 
long-term offspring performance have been described. 
In dairy cattle, research on the effect of birth month 
shows conflicting results, not only between studies 
but also between herds (Soberon et al., 2012; Chester-
Jones et al., 2017; Van Eetvelde et al., 2017; Van 
Eetvelde et al., 2020a). However, a similar trend is 
seen as in human studies. Cattle born in autumn have 
higher first-lactation milk yields and are more likely 
to reach a lifetime milk yield of 100,000 kg (Van Eet-
velde et al., 2020a and 2020b). Several reasons for the 
long-term effect of birth season have been suggested. 
As described above, high ambient temperatures at the 
end of gestation have been associated with changes in 
the phenotype of the calf, such as reduced birth weight 
and high insulin sensitivity (Kamal et al., 2014; Tao 
et al., 2014; Kamal et al., 2015). However, whether 
these changes in metabolism persist during later life 
and are responsible for the effect on later performance 
and health, is still unclear. On the other hand, the birth 
season effect might be related to differences in pho-
toperiod and hence vitamin D status of both the dams 
and the neonates. In human studies, it has been shown 
that besides the primary role of vitamin D in calcium 
and skeletal homeostasis, it plays a more complex 
role in the modulation of immune function (Hewison, 
2012). In cattle, as in other mammals, exposure to 
sunlight is one of the principal natural mechanisms 
through which vitamin D is produced. In grazing cat-
tle, seasonal variation in vitamin D levels have been 
shown, with low levels in winter months (Casas et al., 
2015). Even in intensively managed cattle, where a 
year-round supplementation is applied, low vitamin 
D levels have been shown in fresh cows, resulting in 
more than 25% of newborn calves to be vitamin D-
deficient (Nelson et al., 2016). Due to minimal ultra-
violet light radiation during winter, vitamin D levels 
are expected to be even lower from March to May 
(Krzyścin et al., 2011), suggesting spring-born calves 
to be immunologically deficient in terms of vitamin D 
levels (Casas et al., 2015). This could induce an incre-
ased disease susceptibility in these calves, eventually 
leading to a lower performance and longevity than 
in calves born during autumn. Additional research is 
needed to identify the association between levels of 
vitamin D in neonatal calves and health and perfor-
mance in later life. In addition, the need for higher 
supplementation levels in pregnant cows, especially 
during winter months, should be assessed.

CONCLUSIONS

Studies in dairy cattle have shown that typical phy-
siological conditions, such as continued body growth 
and milk yield, and environmental conditions, such 
as high ambient temperatures during gestation, can 

create a suboptimal environment for the developing 
fetus. As a consequence, adaptations in the phenotype 
of the placenta and the calf are noticed, with poten-
tial long-term effects on their growth, milk yield and 
longevity. This might impose questions about the cur-
rent management strategies, where we want heifers to 
calve at an early age and cows to be inseminated very 
early in lactation. In addition, the current heifer rearing 
strategies – and especially the enhanced liquid feeding 
during the pre-weaning period – might impose risks 
for the future performance, as it accentuates the ‘mis-
match’ between the pre- and postnatal environment.

As cows selected for high milk yield are likely to 
prioritize milk production despite their stressed energy 
level, it might be difficult to counteract this mismatch 
by intervening during the prenatal timeframe. Ho-
wever, there may be an opportunity for interventions 
during early postnatal life in calves, by modulating the 
catch-up growth and preventing the development of 
metabolic diseases in later life. Hence, in management 
practices, all of these aspects to raise healthier and 
more productive dairy cows that live longer, should 
carefully be considered. 
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Over dieren

Varkens ruiken

‘ik kijk niet naar ze, want ik wil ze eerst ruiken. Eerst ruiken dan zien is 
mijn devies. En dan ineens, plotsklaps, een wonder … die heerlijke geur van 
varkens die in het stro hebben gelegen, bereikt mijn neus. Dat is de essentie van 
het varkenshouden.’

Flaptekst van A.J. Snijders: Eenentwintig en Andere Varkensverhalen. Het 
huis met de drie gedichten, Lochem, 2016, pp. 30.


