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ABSTRACT 

One important factor to be considered in the process of algebrization of 

mathematics is the emergence of symbolic language in the seventeenth 

century. Focussing on three works, In Artem analyticen Isagoge (1591) by 

François Viète (1540-1603); Cursus Mathematicus (1634-1637-1642) by Pierre 

Hérigone (1580-1643) and Geometriae Speciosae Elementa (1659) by Pietro 

Mengoli (1626/7-1686), in this article we analyse two relevant aspects of 

symbolic language: the significance of the notation in the symbolic language 

and the role of Hérigone’s new symbolic method. This analysis allows us to 

better understand the role played by this circulation of ideas in the formative 

process of symbolic language in mathematics.. 
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1. Introduction 

     The creation of a formal language was fundamental to the process of 

making algebra part of mathematics. One important factor to be 

considered in this process is the beginning of specious language as a 

new language for mathematics in the seventeenth century. The use of 

this new symbolic language was sometimes considered by the authors 

as an art or as a procedure for expressing ideas that already 

existed.Some authors, like those under study, believed that this 

symbolic language was useful for clarifying the understanding of 

mathematical ideas and also for finding new mathematical results.  

        According to this perception of a symbolic language, we analyze 

some relations between the following three works, referred to in 

chronological order: In Artem analyticen Isagoge (1591) by François Viète 

(1540-1603); Cursus Mathematicus (1634-1637-1642) by Pierre Hérigone 

(1580-1643) and Geometriae Speciosae Elementa (1659) by Pietro Mengoli 

(1626/7-1686) . 

        The publication in 1591 of In artem analyticen isagoge by Viète 

constituted an important step forward in the development of a 

symbolic language for mathematics. Viète introduced the specious 

logistic, therefore the symbols of his analytic art (or algebra) can be 

used to represent not just numbers but also values of any abstract 

magnitude. In addition, he used separate letters to represent both the 

known and the unknown quantities, and was thus able to investigate 

equations in a general form. Using this symbolic language, Viète 
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demonstrated the usefulness of algebraic procedures for analyzing and 

solving problems in arithmetic, geometry and trigonometry.1 As his 

work came to prominence at the beginning of the 17th century, other 

authors also began to consider the utility of symbolic language and of 

algebraic procedures for solving all kinds of problems.  

    Viète’s work was circulated through various texts on algebra, such 

as the Algebra section of Hérigone’s Cursus Mathematicus in 1634.2 In fact, 

Hérigone wrote an encyclopaedic textbook of pure and mixed 

mathematics consisting of five volumes (six volumes in the second 

edition) entitled in full Cursus Mathematicus, nova, brevi et clara methodo 

 

                                                             
1 Viète published several works for showing the usefulness of this analytic art. On 

Viète’s works see: Viète (1970) and Giusti (1992). 

2 Hérigone’s algebra consists of 20 chapters and includes: 1: Several definitions and 

notations. 2, 3: Operations involving simple and compound algebraic expressions. 

4: Operations involving ratios. 5: Proofs of several theorems. 6, 7: Rules for dealing 

with equations, which are the same as those in Viète’s work [These rules were: the 

reduction of fractions to the same denominator (“isomerie”), the reduction of the 

coefficient of the highest degree (“parabolisme”), the depression of the degree 

(“hypobibasme”) and the transposition of terms (“antithese”)]. 8: An examination 

of theorems by “poristics”. 9: Rules of the “rhetique” or exegetic in equations up 

to the second degree. 10–13: Solutions of several problems and geometric 

questions using proofs (determined by means of analysis). 14: Solutions of several 

“ambiguous” equations. 15: Solutions of problems concerning squares and cubes, 

referred to as Diophantus’ problems. 16–19: Calculation of irrational numbers. 20: 

Several solutions of “affected” (negative sign) powers. 
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demonstratus, per notas reales & universales, Citra usum cuiuscunque 

idiomatis, intellectu faciles3. Published in parallel French and Latin 

columns arranged on the same page, the first four volumes appeared in 

1634, the fifth in 1637, and a sixth in 1642 as a supplement to the second 

edition. Hérigone’s stated aim in the Cursus was to introduce a symbolic 

language as a universal language for dealing with both pure and mixed 

mathematics by means of an easier and briefer new method.4  

     Hérigone’s Cursus reached Italy by way of Santini, Galileo and 

Cavalieri,5 and it was there that it was most influential.6 It was used in 

 

                                                             
3 The first and second volumes of Cursus deal with pure mathematics. The first 

volume contains Euclid’s Elements and Data, and Apollonius’s Coniques. The second 

volume is devoted to arithmetic and algebra. The third and fourth volumes deal 

with mixed mathematics, that is to say, with the mathematics required for 

practical geometry, military or mechanical uses, geography, and navigation. The 

fifth and last volume of the first edition, published in 1637, includes spherical 

trigonometry and music. Later, in the second edition (1642), he adds the sixth and 

final volume, which contains two parts dealing with algebra; it also deals with 

perspective and astronomy. 

4 Indeed Gino Loria has already signaled this idea in 1894, see Loria (1894, 110-112).  

5 Cifoletti (1990, 158) states that Antonio Santini explained to Galileo in a letter 

dated 21 September 1641 that he had sent him Hérigone’s Cursus. Galileo then sent 

it to Cavalieri.  

6 On the influence of Hérigone’s Cursus, see Massa (2008, 298-299).  
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particular by Mengoli in his Geometriae Speciosae Elementa (1659).7 It is a 

text in pure mathematics consisting of 472 pages with six Elementa 

whose title: "Elements of Specious Geometry" already indicates the 

singular use of symbolic language in this work, and particularly in 

 

                                                             
7 Geometriae Speciosae Elementa (1659) has an introduction entitled Lectori 

elementario, which provides an overview of the six Elementa, or individually titled 

chapters, that follow. In the first Elementum, De potestatibus, à radice binomia, et 

residua (pp. 1-19), Mengoli gives the first 10 powers of a binomial given with 

letters for both addition and subtraction, and says that it is possible to extend his 

result to higher powers. The second, De innumerabilibus numerosis progressionibus 

(pp. 20-94), contains calculations of numerous summations of powers and 

products of powers in Mengoli's own notation, as well as demonstrations of 

certain identities. In the third, De quasi proportionibus (pp. 95-147), he defines the 

ratios "quasi zero", "quasi infinity", "quasi equality" and "quasi a number". With 

these definitions, he constructs a theory of quasi proportions on the basis of the 

theory of proportions found in the fifth book of Euclid's Elements. The fourth 

Elementum, De rationibus logarithmicis (pp. 148-200), provides a complete theory of 

logarithmical proportions. He constructed a theory of proportions between the 

ratios in the same manner as Euclid did with magnitudes in the fifth book of 

Elements. From this new theory in the fifth Elementum, De propriis rationum 

logarithmis (pp. 201-347) he found a method for calculation of the logarithm of a 

ratio and deduced many useful properties of the ratios and their powers. Finally, 

the sixth Elementum, De innumerabilibus quadraturis (pp. 348-392) calculates the 

quadratures of curves determined by algebraic expressions now represented by y 

=K. xm. (t-x)n. A detailed analysis of this work can be found in Massa (2006).   
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geometry. Mengoli unintentionally created a new field, a "specious 

geometry", modelled on Viète's "specious algebra” through Hérigone’s 

influence, since he worked with “specious” language, that is to say, 

symbols used to represent not just numbers, but also values of any 

abstract magnitudes. Mengoli acknowledges Viète’s and Hérigone’s 

influences at the beginning of the book. In the introductory letter to 

Fernando Riario, Mengoli reveals his sources in a reference to Viète’s 

algebra and he also claims as a source Hérigone’s algebra: “To those 

symbols that Viète, Hérigone, Beaugrand (…)”.8 Actually Mengoli uses 

Hérigone’s new symbolic method to deal with limits, logarithms and 

quadratures9. 

 

 

 

                                                             
8 Quibus characteribus à Vietta, Herigonio, Beaugrand…(Mengoli, 1659, 12). 

9 Mengoli, who was influenced by Hérigone’s idea of symbolic language as a 

powerful tool, introduces symbolic language into the theory of proportions from 

Euclid’s Elements. He extends this theory and creates two new theories: the theory 

of quasi proportions and the theory of logarithmic proportions (Massa, 1997, 257–

280; Massa, 2003, 457–474). Mengoli hardly uses geometric representations at all in 

his works. He works directly with algebraic expressions of geometric figure. On 

Mengoli’s figures and its quadratures see Massa (2006) and Massa-Delshams 

(2009).  
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        Since in our previous works we have shown some evidence of 

the relation between these authors,10 we may now pose some questions: 

In what sense can we speak about reception or appropriation of 

knowledge between these authors? Referring to the new symbolic 

method introduced by Hérigone, one may ask: How was symbolic 

language used and understood by Hérigone? What did Hérigone’s new 

symbolic method contribute to the understanding, teaching and 

validation of mathematical knowledge? Thus, the aim of this article is to 

analyse two relevant aspects of symbolic language in the relationships 

between these three works: the significance of the notation in the 

symbolic language and the role of Hérigone’s new symbolic method. This 

analysis allows us to better understand the role played by this circulation 

of ideas in the formative process of symbolic language in mathematics. 

 

  

 

                                                             
10  In our previous work we have shown that Hérigone in “Algebra”, section of 

volume 2, presents the same parts as Viète’s works and generally used Viète’s 

statements. However, Hérigone’s notation, presentation and procedures in his 

algebraic proofs were very different from Viète’s. On a comparative analysis 

between Viète’s specious algebra and Hérigone’s algebra, see Massa (2008).  
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2. On notation: from Viète’s 

indeterminate to Mengoli’s 

determinable indeterminate 

quantity 

      The language used in mathematics before the seventeenth century 

was mainly rhetorical and then later rhetorical with abbreviations.11 For 

instance, in his treatise Al-kitab almukhtasar fi hisâb al-jabr wa’l-muqabala 

(c. 825), Al-Khwarizmi (780-850) describes different kinds of equations 

using rhetorical explanations. His proofs are given in the form of 

codified statements. There are no symbols in his work. Later, when 

Leonardo de Pisa (1170-1240) (known as Fibonacci) expresses the Arabic 

rules in his Liber Abaci (1202), he uses “radix” to represent the “thing” or 

unknown quantity (also called “res” by other authors) and the word 

“census” or “ce” to represent the square power. This rhetorical 

language with some abbreviations continued to be used in several 

algebraic works in the early Italian Renaissance, such as Summa de 

Arithmetica, Geometria, Proportioni e Proportionalità (1494) by Luca Pacioli 

 

                                                             
11 On the different expressions of notations, see Cajori (1928-29).   
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(1445-1514),12 and later in Ars Magna Sive de Regulis Algebraicis (1545) by 

Girolamo Cardano (1501-1576). To represent unknown quantities, the 

first power named “cosa” was abbreviated to “co.”, the square or 

“census” to “ce.”, the cube to “cu.”, etc.. The influence of German 

algebras, nowadays named “cossic” algebras,13 particularly texts such as 

Die Coss (1525) by Christoph Rudolff  (1499-1545), and over all Arithmetica 

Integra (1543) by Michael Stifel (1487-1567) was also significant. In German 

algebras for representing the powers of unknown quantities they 

generally used a different symbol for each power.14 In the sixteenth 

century we can also quote Marco Aurel’s work that was one of the first 

treatises containing algebra to appear in print on the Iberian Peninsula, 

Libro primero de Arithmetica Algebratica (Valencia, 1552), also the 

 

                                                             
12 Høyrup provided an account of the innovations in Italian abacus algebra and 

referred to mid-fourteenth-century formal calculations of fractions. See Høyrup 

(2010).  

13 This name derives from the treatment of problems with an unknown quantity 

called “cosa”.  

14 In France, we can quote the Tryparty by Nicolas Chuquet and over all the printed 

works of de la Roche  (Heeffer, 2010). Also Jacques Peletier (1517-1582) with 

L’Algèbre (Lyon, 1554), Jean Borrel (Johannes Buteo, 1492-1572) that wrote Logistica 

Quae et Arithmetica Vulgo Dicitur (Lyon, 1559) or Pierre de la Ramée (Petrus Ramus, 

1515-1572) that wrote Algebra (Paris, 1560) using his own symbolism and 

terminology. Consequently, there was no clear algebraist’s line in France, but 

rather many individual contributions (Van Egmond, 1988, 141; Cifoletti, 1990, 121-

142).  
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publication of the Compendio de la Regla de la Cosa o Arte Mayor (Burgos, 

1558) by Juan Pérez de Moya and six years later, the Arithmética 

(Barcelona, 1564) by Antic Roca, all three with different notation but with 

the same significance of powers in a continued proportion, provide a solid 

foundation of “Spanish Arte Mayor” as showed by Massa (2012).   

       During the seventeenth century the notation and formalism of 

algebraic expressions evolved after the works by Viète had been 

published. However, there were no unifying criteria and so for many 

years different notations were used in algebraic works.15  

     In order to address the circulation and influence of symbolic 

language of the works under study, one should therefore consider the 

notation first. If one observes only the notation used by these three 

authors one may be led to believe that there is no relation between 

them. There are in fact only a few coincidences between Hérigone’s and 

Mengoli’s notation. See table below:  

 

 

 

 

                                                             
15 For instance, in the seventeenth century, if we consider the symbolic language 

in Artis Analyticae Praxis ad Aequationes Algebraicas Resolvendas (1631) by Thomas 

Harriot (c.1560-1621) and in Clavis Mathematica (1631) by William Oughtred (1573-

1660), who publicized Viète’s work in England, we realize that their notations are 

quite different (Stedall, 2002, 55-125). 
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Signs Viète 

(1591) 

Hérigone 

(1634) 

Mengoli  

(1659) 

Equality 

Greater than 

Less than 

aequalis 2/2 

3/2 

2/3 

: 

Maior quam 

Minor quam 

Product of a and b A in B ab a 

b 

Addition plus + + 

Subtraction minus  _ 

Ratio ad pi ; 

Square root ,  

cubic root 

VQ.  

VC. 

V2  

V3 

R 

Squares Aquadratus, 

Aquad. 

a2 a2 

Cubes Acubus, 

 Acub. 

a3 a3 

 

However, when Hérigone defines his notation in his section of 

Algebra, he identifies it with Viète’s notation. As an example, we may 

refer to the explanation of the notation at the beginning of Algebra in 

the Cursus, where Hérigone presents his notation by transforming 

Viète’s notation. For example, Hérigone writes “ab signifies A in B”; “a2b 
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signifies A quadratum in B” and so on, the former being Hérigone’s 

notation and the latter Viète’s notation (see Figure 1). 

 

 

Figure 1. Hérigone’s introduction to Algebra (Hérigone, 1634, II, 5) 

Twenty-five years later, Mengoli, at the beginning of his Geometria 

and on a separate page under the title Explicationes quarundam notarum, 

explains the basic notation he intends to use. Note that for representing 

the powers, Mengoli, like Hérigone, wrote the exponent to the right of 

the letter, as in Figure 2.  
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Figure 2. Mengoli’s notation in Geometria (Mengoli, 1659, I, 8) 

    We now proceed to analyze the development of the significance of 

the symbolic notation, specifically the significance of the letter 

representing a known quantity, which is different for the three authors. 

In fact, as we have said one of the major innovations in the late 

sixteenth century was the symbolic representation of the “given” by a 
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letter in Viète’s works.16 This author uses separate symbols to represent 

both known and unknown quantities. Nevertheless, if we observe Viète’s 

equation, we can appreciate the rhetorical form. We provide one example 

to show how Viète writes an equation: 

“B in A – A quad. Aequatur Z quad” (Viète, 1970, 86) 

 which in modern notation would be written     

Bx – x2 = Z2. 

 Certainly, for Viète this letter B represents the known quantity; that is, 

an indeterminate quantity but a given quantity. In 1591, he introduced 

the letter B to represent the known quantity; namely, the “given”, 

although fixed, and its value can be arbitrarily selected. One may then 

speak about an indeterminate quantity being arbitrary, but a given 

quantity.  

     Later, Hérigone, when trying to adopt Viète’s algebra in his Cursus, 

clearly legitimated this letter B as a kind or species of numbers, whose 

use in the algebraic rules does not depend on the value assigned. Let us 

show Hérigone’s explanation of the status of the “given” letter: 

Specious algebra is so-named from letters of the alphabet 

which have no particular meaning, either as discrete 

quantities, which are numbers, or as continuous 

quantities, except what one attributes to them. For 

 

                                                             
16 On the analysis of the features of the development of symbolic language, see 

Serfati (2010, 108-111). 
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example, if we attribute a value of 12 to the letter B, the 

reasoning applied to this letter B, without taking into 

account  the number 12, applies to any other number, 

such as 15, 20, etc., and thus the letter B will represent 

these numbers as a kind, not as individuals or particulars. 

This must also be understood for continuous quantities, 

whether they be lines, surfaces or any other quantities 

one wishes.17 

 Hérigone goes on to explain this advantage for inventing universal 

theorems: “By means of these letters, one can invent universal 

theorems for both continuous and discrete quantities".18  

 

 

 

                                                             
17 L’Algèbre Spécieuse se nomme ainsi des lettres de l’alphabet, qui n’ont aucune 

signification particulier, ny en la quantité discrète, qui soit les nombres, ny en la 

continue, sinon celle qu’on leur attribue. Par exemple, si on attribue à la lettre B12 

pour sa valeur, le raisonnement qu’on fera avec icelle lettre B, sans considérer le 

nombre 12, conviendra aussi à tout autre nombre comme à 15, 20, etc & par ainsi 

la lettre B signifiera l’espèce des nombres & non les individus & particuliers. Ce 

qu’il faut aussi entendre en la quantité continue, pouvant signifier une ligne, une 

superficie, ou autre quantité telle qu’on voudra. (Hérigone, 1642, VI, 76). 

18 Par le moyen des quelles lettres on invente des théorèmes universels tant en la 

quantité continue que discrète (Hérigone, 1642, VI, 76).  
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      Indeed, Hérigone in his Algebra tried to generalize some of Viète’s 

statements. The symbolic language in Hérigone’s hands allows 

obtaining new results. For instance, at the end of De recognitione et 

emendatione aequationum, tractatus secundus (1615) Viète gives examples 

of ambiguous Equations (equations with several roots) of degree 2, 3, 4, 

5, but failed to provide a proof, claiming he had dealt with it elsewhere.  

     On the other hand, Hérigone states a theorem that generalizes 

this result. This theorem can be found at the end of Chapter 20 of 

Hérigone’s volume on Algebra (1634), after calculations (similar to those 

of Viète) that consisted in finding the upper or lower bounds in the 

numerical solutions of ambiguous equations. Hérigone, concludes by 

stating a theorem that generalizes his results: 

If a positive power is affected by all possible lower 

degrees and by the independent term, which are 

alternately negative and positive, and the coefficient of 

the power following the highest power being the sum of 

as many numbers as there are unities in the exponent of 

the [highest] power; the coefficient of the following 

degree is the sum of all plane numbers of those numbers; 

the coefficient of the third degree is the sum of  all solids, 

and so on as far as the independent term, which is the 

product of these numbers continuously multiplied; the 

number of all the positive terms will be equal to the 

number of all the negative terms and consequently if the 

independent term is on one side of the equation and the 
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highest power and all lower degrees on the other side, the 

root of the equation may be expressed by each of the 

proposed numbers.19     

 

                                                             
19 Si une puissance affirmée est affectée sous tous les degrés parodiques & sous 

l’homogène de comparaison, qu’ils soient alternativement niez & affirmez, & que 

le coefficient du degré parodique prochain à la puissance, soit l’agrégé d’autant de 

nombres qu’il y aura d’unités en l’exposant de la puissance : le coefficient du 

second degré inferieur suivant, soit l’ agrégé de tous les plans des mêmes 

nombres : le coefficient du troisième degré, soit l’agrégé de tous les solides, & ainsi 

de suite jusques à l’homogène de comparaison qui est le produit des dits nombres 

multipliez continûment : la somme de tous les affirmez sera égale à la somme de 

tous les niez, & par conséquent si l’homogène de comparaison fait une partie de 

l’équation, & la puissance avec tous ses degrés parodiques l’autre partie, la racine 

de la puissance pourra être expliquée par un chacun des nombres proposez./ Si 

potestas affirmata, sit affecta sub omnibus gradibus parodicis, alternatim negatis 

& affirmatis, sitque coefficiens, primi gradus parodici à potestate, aggregatum 

totidem numerorum, quot sunt unitates in exponente potestatis : coefficiens 

secundi gradus, aggregatum omnium planorum eorundem numerorum : 

coefficiens tertij gradus, aggregatum omnium solidorum, & ita deinceps usque ad 

homogeneum comparationis, quod gignitur ex continua multiplicatione 

eorundem numerorum : aggregatum omnium affirmatorum erit aequale 

aggregato omnium negatorum, ac proinde si homogeneum comparationis faciat 

unam aequationis partem, & potestas cum omnibus suis gradibus parodicis 

alteram, radix potestatis erit explicabilis de quolibet illorum numerorum. 

(Hérigone, 1634, II, 195–196). 
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  This theorem deals with finding ambiguous equations with a given 

set of roots, the importance of which Hérigone is at pains to stress. It 

can be stated in modern notation as: 

1 2

1 2 1...n n n

n n ox a x a x a x a 

       

where if p1, p2, p3, … pn are n-roots of the equation, then 

0

1

;
i n

i

i

a p




  

the other terms represent the sum of the roots pi combined, that is, 

1 2

1 1

;
i n

n i n i j

i i j n

a p a p p


 

   

   , 

and so on. 

In fact the analysis of the relationship between the roots of an 

equation and the coefficients of the equation constitutes a step forward 

into the development of the theory  of algebraic  equations in the 17th 

century.        

       Later, in 1659, in Italy, Mengoli probably the most original 

student of Cavalieri, developped a new and fruitful algebraic method for 

solving quadrature problems using Viète’s and Hérigone’s algebra. In 

fact, Mengoli having closely read Hérigone’s Cursus introduced in his 

Geometria the new concept of a determinable indeterminate quantity. 

Mengoli’s idea is that letters could represent not only given numbers, 

unknown or indeterminate quantities, but variables as well; that is, in 

Mengoli’s words: determinable [but] indeterminate quantities. For 

instance, Mengoli constructs the summations in the Elementum 
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secundum of his Geometria by a new means of writing and calculating 

finite summations of powers and products of powers. He did not give 

them values or wrote them using the sign + and suspension points (…), 

but rather created an innovative and useful symbolic construction that 

would allow him to calculate these summations (which he calls species), 

which he regarded as new algebraic expressions. He considered an 

arbitrary number or tota, represented by the letter t, and divided it into 

two parts, a (abscissa) and r = t-a (residua). He then took tota equal to 2, 

3,... and gave examples up to 10. That is to say, if t is 2, a is 1, and r is 1. If 

t is 3, a may be 1 or 2 and r is then 2 or 1, respectively. He also calculated 

the squares and cubes of a, the products of a and r, of the squares of a 

and r, and so on. He then proceeded to add all the numbers a that he 

separated from the same number t . For instance, if t is 3, the 

summation will be 3, because it is the sum of 1 and 2; if t is 4, the 

summation will be 6, because it is the sum of 1, 2, and 3, and so on. He 

wrote O.a to express this sum from a=1 to a=t-1: 20 

 







1

1

.
ta

a

aaO  

 

 

                                                             
20  Obviously "O. " meant Omnes and originated with Cavalieri and his Omnes lineae. 
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The summations that Mengoli obtains are indeterminate numbers, 

but they become determinate when we know the value of t. Mengoli 

describes the notation as follows:  

When I write O.a.,...you have the summation [massa] of all 

the abscissae: but what value this summation is you still 

do not  know if I do not write what number the 

summation is. But if I assign O.a. to the summation of the 

number t, you still do not know how much it is if at the 

same time I do not assign the value of the letter t21. 

  By assigning different values to t, Mengoli explicitly introduces the 

concept of the “variable”, a notion that was rather new at the time. To 

clarify this idea, Mengoli adds: 

But when I allow you to fix a value for the letter t, and 

you, using this license, say that t is equal to 5, 

immediately you will accurately assign O.a. equal to 10, t2 

equal to 25, t3 equal to 125, and O.r. equal to 10, and if the 

letters t are determinate, the quantities O.a., O.r., t2, t3, will 

be determinate. Thus, before you have used the license 

 

                                                             
21  Cum scripsero O.a. habes massam ex omnibus abscissi: sed quota sic haec massa, 

nondum habes, nisi scripsero cuius numeri sit massa. Quod si assignavero O.a., 

numeri t massam esse; neque sic habes, quota sit, nisi simul assignavero, quotus 

est numerus, valor litterae t …(Mengoli, 1659, 61).   
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given, you actually had O.a., O.r., t2, t3,[which are ] 

determinable [but] indeterminate quantities.22  

It should be pointed out that Mengoli uses the “specious” language 

both as a means of expression and as an analytic tool. Therefore, 

Mengoli also applies his idea of “variable” to calculate the "quasi ratios" 

(nowadays, the limit) of these summations (Massa, 1997). The ratio 

between summations is also indeterminate, but becomes determinable 

by increasing the value of t. From this idea of quasi ratio, he constructs 

the theory of “quasi proportions” taking the Euclidean theory of 

proportions as a model, which enables him to calculate the value of the 

limits of these summations.23  

      We have presented an example on the different strategies for 

representing the known by these authors, which in Mengoli’s hands 

allows him to introduce the idea of variable and to develop the concept 

of limit. This provides us with a valuable example of the evolution for 

 

                                                             
22  Cum verò licentiam dedero, ut quotum quemque litterae  t valorem taxes; tuque 

huiusmodi usus licentia dixeris, t valere quinario : statim profecto assignabis & 

O.a., valere 10 ; & t2, valere 25 ;& t3, valere 125 ;& O.r., valere 10 ;& determinatae 

litterae t, determinatas esse quantitates  O.a., O.r.,t2, t3. Quare data licentia 

antequam usus fueris, habebas profecto O.a., O.r., t2, t3, quantitates indeterminatas 

determinabiles. (Mengoli, 1659, 61).  

23 This theory constitutes an essential episode in the use of the infinite and would 

prove to be a very successful tool in the study of Mengoli’s quadratures and 

logarithms. 



174 M. MASSA ESTEVE  

 

the understanding and the use of symbolic language through this 

process of transmission, appropriation and circulation in the 

seventeenth-century.  

3. On Hérigone’s symbolic method. 

From rhetorical explanations to 

symbolic lines 

       In order to clarify the role of the symbolic language we analyse the 

features of some proofs in the works under study. A study of the three 

texts reveals that the presentation of propositions is approached very 

differently,  ranging from rhetorical explanations in Viète’s works to 

symbolic lines in Hérigone’s and Mengoli’s works. If we compare 

Hérigone’s presentation of the proof of an identity proposition with 

Viète’s similar identity, we can see that Viète gives rhetorical 

explanations and verbal descriptions, uses few symbols, employs capital 

letters to represent quantities, leaves no margins and writes the words 

“cubus”, “quadratus”, etc. to express powers. In contrast, Hérigone 

formulates all identities and properties, and even some statements in 

symbolic language, providing no rhetorical explanations or verbal 

descriptions, and he writes the powers using a number. Compare Figure 

3 from Viète and Figure 4 from Hérigone.   
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Figure 3. Proposition XV in Viète’s Ad Logisticen Speciosam (Viète,  
1970, 20) 
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Figure 4. Proposition V. XIX in Hérigone’s Algebra (Hérigone, 
1634, II, 46) 

The most important aspect therefore is how Hérigone appropriates 

Viète’s proofs and transforms these rhetorical explanations into a set of 

symbolic lines. In fact, Hérigone devises a new method using the 

symbolic language to present the proofs.  

      So, in the title he writes: “A Course of Mathematics demonstrated 

by a brief and clear new method through real and universal symbols, 

which are easily understood without the use of any language”. Hérigone 

also claims that he had invented a brief and intelligible new method for 
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making demonstrations; which he explains in the dedication “Au 

lecteur/ Ad lectorem” [To the reader]   

There is no doubt at all that the best method for teaching 

the sciences is that in which brevity is combined with 

ease. But it is not always easy to attain both, particularly 

in mathematics, which, as Cicero pointed out, is highly 

obscure. Having considered this myself, and seeing that 

the greatest difficulties are in the demonstrations, 

understanding of which depends on a knowledge of all 

parts of mathematics, I have devised a new method, both 

brief and clear, of making demonstrations, without the 

use of any language.24 

 

                                                             
24 Car on ne doute point, que la meilleure méthode d’enseigner les sciences est 

celle, en laquelle la brièveté se trouve conjointe avec la facilité : mais il n’est pas 

aisé de pouvoir obtenir l’une & l’autre, principalement aux Mathématiques, 

lesquelles comme témoigne Ciceron, sont grandement obscures. Ce que 

considérant en moi-même, & voyant que les plus grandes difficultés estoites aux 

démonstrations, de l’intelligence desquelles dépend la connaissance de toutes les 

parties des Mathématiques, j’ai inventé une nouvelle méthode de faire les 

démonstrations, briefe & intelligible, sans l’usage d’aucune langue. /Nam extra 

controversiam est, optimam methodum tradendi scientias, esse eam, in qua 

brevitas perspicuitati coniungitur, sed utramque assequi hoc opus hic labor est, 

praesertim in Mathematis disciplinis, quae teste Cicerone, in maxima versantur 
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Moreover, Hérigone stresses the importance of knowing the symbols 

and understanding the proofs performed using this universal notation. 

We can distinguish three features in Hérigone’s new method: the original 

notation, the axiomatic-deductive reasoning and the presentation of the 

propositions.  

        Concerning the first feature, throughout the book Hérigone uses 

an original notation with new symbols and new abbreviations to 

represent algebraic expressions, numbers and signs. In each volume of 

the Cursus he provides alphabetically ordered tables of abbreviations 

(which he calls « explicatio notarum »);25 as in Figure 5.  

                                                                                                                                         

difficultae. Quae cum animo perpenderem, perspectum que haberem, difficultates 

quae in erudito Mathematicorum pulvere plus negotijs facessunt, consistere in 

demonstrationibus, ex quarum intelligentia Mathematicarum disciplinarum 

omnis omnino pendet cognitio: excogitavi novam methodum demonstrandi 

brevem, & citra ullius idiomatis usum intellectu facilem.  (Hérigone, 1634, I, Ad 

Lectorem). 

25 It is noteworthy that Mengoli in his Geometria also provides a table of notation 

called « explicationes quarundam notarum », see Figure 2 in this article.  
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Figure 5.  Hérigone’s table of abbreviations (Hérigone, 1634, I, f. bvr) 

 

He also presents tables of explanations of the citations (“explicatio 

citationum”) at the beginning of each of the volumes that make up the 
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Cursus; (see Figure 6). The citations either refer to propositions in 

Euclid’s Elements or to the Cursus itself. Thus, for example, “C.17.I” 

means “Corollarium decimae septimae primi. Corollaire de la dix-

septième du premier”. 

 

 

Figure 6. Hérigone’s explanatory table of citacions (Hérigone, 1634, I, f. 

bviir) 
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The second feature of Hérigone’s method concerns his use of an 

axiomatic-deductive reasoning. Hérigone’s originality resides not only in 

the explicit explanation of axiomatic-deductive reasoning, but also in 

its use in syllogisms, because in the demonstrations one can find in one 

symbolic line the major premise and the conclusion, using the former 

symbolic line as the minor premise. Hérigone’s states this relation with 

syllogisms, as follows: 

And as each consequence depends immediately on the 

proposition cited, the demonstration is sustained from 

beginning to end by a continuous series of legitimate, 

necessary and immediate consequences.26 

The demonstration is sustained  from beginning to end by 

a continuous series of legitimate, necessary and 

immediate consequences, each one included in a short 

line, which can be solved by syllogisms, because in the 

 

                                                             
26  En cette methode on ne dit rien qui n’aye esté expliqué & concedé aux 

premises... Et parce que chaque consequence depend immediatament de la 

proposition citée, la demonstration s’entretien depuis son commencement 

jusques à la conclusion, par une suite continue de consequences legitimes, 

necessaires & immediates / In hac methodo nihil adfertur, nisi fuerit in praemissis 

explicatum & concessum...Et quoniam singulae consequentiae ex propositionibus 

allegatis immediate pendent, demonstratio ab initio ad finem, serie continua, 

legitimaru, necessariarum que consecutionum immediatarum (Hérigone, 1634, I, 

Ad Lectorem).  
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proposition cited as well as in that  corresponding to the 

citation one can find all parts of the syllogism.27 

    We now analyze the demonstration of Proposition I 28.  

 

                                                             
27 La demonstration s’entretien depuis son commencement jusques à la 

conclusion, par une suite continue de consequences legitimes, necessaires & 

immediates, contenues chacune en une petite ligne, lesquelles se peuvent 

resoudre facilement en syllogismes, à cause qu’en la proposition citée, & en celle 

qui correspond à la citation, se trouvent toutes les parties du syllogisme: comme 

on peut voir en la premiere demonstration du premier livre, qui a esté reduite en 

syllogismes./demonstratio ab initio ad finem, serie continua, legitimarum, 

necessariarumque consecutionum immediatarum, singulis lineolis comprensarum 

aptè cohaeret: quarum unaquaeque nullo negotio in syllogismum potest converti, 

quòd in propositione citata, & in ea quae citationi respondet, omnes syllogismi 

partes reperiatur: ut videre est in prima libri primi demonstratione, quae in 

syllogismos est conversa. (Hérigone, 1634, I, Ad Lectorem). 

28 This demonstration is also found in our previous work where we analyzed how 

Hérigone reformulates Euclid’s Elements from Clavius’ Elements in symbolic 

language in his Cursus, see Massa, 2010. 
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Figure 7. Proposition I.1 (Hérigone, 1634, I, 1) 

 

In the first, book Hérigone proved the first proposition by his 

method and further by syllogisms and explains the identification of the 

premises in the demonstration. At the beginning, Hérigone states:  “This 

demonstration is performed by four syllogisms, as one can perceive from 

the number of citations”.  He then explains all the syllogisms. 
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“III SYLLOGISM. 

 Those things that are equal to the same are equal to each other. 

 But the straight lines AC & CB are equal to the same straight line.  

 Therefore the straight lines AC & CB are equal to each other”.29 

       

So, in the III syllogism, Hérigone writes: “I. axiom. 1. AC = BC”, the 

major premise is the first axiom of Euclid’s book I, while the minor 

premise is deduced from the conclusions of the first and second 

syllogisms: AC = AB and BC = BA, and the conclusion of this third 

syllogism is AC = BC. These conclusions enable the minor premise in the 

last syllogism to be deduced.  

 

“IV SYLLOGISM. 

 All triangles that have three equal sides are equilateral. 

 But the triangle ABC has three equal sides. 

Therefore the triangle ABC is equilateral”30. 

 

                                                             
29 III. SYLLOGISME. Les choses égales à une mesme, sont égales entr’elles. Mais les 

lignes droites AC & CB sont égales à une mesme ligne droite. Donc les lignes 

droites AC & BC sont égales entr’elles./III. SYLLOGISMUS. Quae eidem aequalia 

sunt, inter se sunt aequalia. Sed rectae AC & BC sunt eidem rectae aequales. Igitur 

rectae AC & BC sunt inter se aequales. (Hérigone, 1634, I, 2). 

30 IV. SYLLOGISME. Tout triangle qui a trois costez égaux, est equilateral. Mais le 

triangle ABC a trois costez égaux. Donc le triangle ABC est equilateral. /IV. 

SYLLOGISMUS. Omne triangulum habens tria latera aequalia, est aequilaterum. 
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In this case, Hérigone writes:” I. definition. 23. ABC is an equilateral 

triangle”, the major premise is I.d.23, while the minor premise is 

deduced from the former conclusions AC = AB, BC = BA and AC = BC, and 

the conclusion of the third syllogism is that “the triangle ABC is 

equilateral”, which concludes the demonstration.  

        Hérigone’s originality resides not in the demonstration by using 

syllogisms, but rather in  the identification of all parts of the syllogism 

as symbolic lines, which transforms the demonstration by syllogisms 

into another, shorter and easier one.  

       The third feature of Hérigone’s method addresses the presentation 

of propositions. Hérigone divides his propositions into separate sections: 

hypothesis (known and unknown quantities), explanation or 

requirement, proof, and conclusion. In the margin he writes the 

number of propositions of Euclid’s Elements that he is using. He 

occasionally gives the numerical solution (for example in an equation) in a 

section headed “Determinatio”. In geometric constructions, he provides 

the instructions needed to make the drawing in a paragraph referred to as 

“Constructio”.  Hérigone writes as follows: 

 

 

 

                                                                                                                                         

Sed triangulum ABC tria habet aequalia latera. Igitur triangulum ABC est 

aequilaterum. (Hérigone, 1634, I,  2).  
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The distinction of the proposition into its members, that 

is, the part in which the hypothesis is advanced, the 

explanation of the requirement, the construction or 

preparation and the demonstration, thereby relieves the 

memory and makes it very helpful for understanding the 

demonstration31. 

Indeed, it is important to point out that Hérigone sought to 

introduce a new, briefer and more intelligible method for making 

demonstrations in pure and mixed mathematics.  

       Now we wish to show how Hérigone’s method, devised for a 

better understanding of Mathematics, was used by Mengoli for 

obtaining new results in his Geometria 25 years later.
 

Like those by 

Hérigone, Mengoli’s demonstrations are expressed in symbolic language 

with logical statements consisting of a few lines. We can identify the 

syllogisms in the lines of this proposition (See Figure 8). 

 

                                                             
31 La distinction de la proposition en ses membres, savoir en l’hypothese, 

l’explication du requis, la construction, ou preparation, & la demonstration, 

soulage aussi la memoire, & sert grandement à l’intelligence de la 

demonstration.  / Praeterea distinctio propositionis in sua membra, scilicet in 

hypothesin, explicationem quaesiti, constructionem, vel praeparationem, & 

demonstrationem non parum iuvat quoque memoriam, & ad intelligendam 

demonstrationem multùm prodest. (Hérigone, 1634, I, Ad lectorem).  
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Figure 8.  Proposition I.1 in Mengoli’s Geometria (Mengoli, 1659, I, 9)  

 

Mengoli’s goal was to create a new discipline, a specious geometry 

modelled on Viète's specious algebra, by further developing Hérigone’s 

symbolic language. He refers to Euclid’s Elements using conventions 

similar to those of Hérigone. For instance, Mengoli writes “22.5” in the 

margin to indicate his use of Euclid V.22 . In the proof he writes a ; i : c ; 

l” (modern notation: a : i = c : l). In his Algebra, Hérigone had written 

“22.5” in the margin  and “ ik  m 2/2 fd  de” (modern notation: ik : m 

= fd : de) in the proof  (Hérigone, 1634, II, 148).
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         A further important relation lies in the demonstrations and in 

the presentation of the propositions. Mengoli writes all his proofs in 

Hérigonean style. Mengoli’s propositions, like those by Hérigone, are 

divided into parts, such as “Hypothesis”, “Praeparatio” and 

“Demonstratio”. Mengoli, who was influenced by 
Hérigone’s idea of 

symbolic language as a powerful tool, also absorbed his method of 

presenting demonstrations. 

        
The role of symbolic language in Mengoli’s Geometria is both 

significant and original. In fact, the arithmetic manipulation of these 

algebraic expressions helped Mengoli to obtain new results, he derived 

unknown values for the areas of a large class of geometric figures at 

once, and new procedures like the summations, the rules of sum of kth-

powers of th-integers, etc.  

4. Conclusion 

We have described a brief episode from the process of algebraization of 

mathematics which took place gradually and in very different ways in 

several locations during the early seventeenth century. We must 

emphasize that Hérigone presents an original symbolic language as a 

universal language for working with pure mathematics as well as mixed 

mathematics. In fact, his project constitutes a new method that enables 

him reformulate known mathematics in a symbolic language, such as 

from Viète’s work, Euclid’s works and others. This symbolic language 
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allows expressing mathematics in short lines and renders the 

demonstrations briefer, clearer and, as Hérigone remarked, relieves the 

memory.    

     Regarding the circulation of these ideas, not only is it important 

for one author or another to use the same symbols to represent 

quantities (powers); more important is the significance of these symbols 

for  representing any magnitude (discrete or continuous) throughout 

the process of reasoning in the demonstrations or for the resolution of 

the problems. Certainly, Viète introduces his logistical “speciosa” for 

dealing with any magnitude; Hérigone for his part wishes to introduce 

this universal language for teaching and validating both pure and mixed 

mathematics providing universal theorems, while Mengoli finally uses 

symbolic language for finding new results and for creating a new 

discipline in mathematics as a “geometry of species”.  

     Through the reception of Viète’s statements and rhetorical 

demonstrations, Hérigone introduces a new symbolic language and a 

new method of axiomatic-deductive reasoning for improving the 

understanding of Viète`s rhetorical demonstrations and of all pure and 

mixed mathematical demonstrations. This symbolic language is 

expressed in short lines following a logical structure which can be 

identified by syllogisms. Moreover, the divisions established in the 

demonstrations make Hérigone’s demonstrations clearer than Viète’s 

rhetorical demonstrations, and enable all the steps in the process to be 

seen at once. Hérigone followed up on Viète’s analytic art by 

introducing this new method for a better understanding of the results 

in mathematical demonstrations. The justification for the use of this 
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method adopting the symbolic language therefore resides in its 

didactical purpose.    

       Mengoli, who read Hérigone’s Cursus, subsequently absorbed 

Hérigone’s ideas in his Geometria, and presented his demonstrations 

using Hérigone’s procedure, thereby enabling him to arrive at new 

results. 

       In conclusion, this new method of demonstration using a 

universal language and logical sentences by means of axiomatic-

deductive reasoning is absolutely original,  and provides us with an 

insight into clarity of the logical structure of both Hérigone’s and 

Mengoli’s thinking.  
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