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ABSTRACT 

To process dendrochronological data sets, mathematical techniques that can handle 
complexity are needed. Two methods from the field of numerial ecology are 
introduced in tree ring analysis: redundancy analysis (an eigenvector method) and 
the evolutionary learning algorithm (a machine learning tool). Both methods show to 
be appropriate for a stringent test case. Redundancy analysis explains variance in tree 
ring data by environmental date revealing main trends. The evolutionary learning 
algorithm can be applied to look for unexpected strong environmental signals possibly 
departing frem main trends. 
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RESUME 

L'analyse des donnees dendrochronologiques do it tenir compte d'une tres grande 
complexite. Deux methodes du domaine de l'ecologie numerique sont proposees : 
l' analyse en composantes principales des variables instrumentales ('RDA : redundancy 
analysis') et I' algorithyme d' apprentissage evolutionaire ('ELA : evolutionary learning 
algorithm'). On prouve que les methodes sont toutes deux utiles pour la description 
des relations entre les cernes et l'environnement : RDA est surtout interessante pour 
les tendances majeures, ELA egalement pour des cas extremes avec des forts signaux 
d' environnement. 

ZUSAMMENFASSUNG 

Zur Verarbeitung von dendrochronologischen Datenreihen sind mathematische 
Verfahren notwendig die der .. Komplexim.t der Daten Rechnung tragen. Zwei 
Methoden aus der numerischen Okologie werden vorgestelt und auf ihre Eignung im 
gegebenen Kontext getested : der 'redundancy analysis (RDA)' (eine Eigenvektor­
methode) und der 'evolutionary learning algorithm' (eine Technik aus der artifiziellen 
Intelligenz, 'machine learning'). Beide Methoden erscheinen als geeignet. Die 
'redundancy analysis' driickt die Varianz der Jahresringdaten in Abhangigkeit von den 
Umweltdaten als Haupttrends aus. Der 'evolutionary learning algorithm' erlaubt die 
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Lokalisierung der starksten Umweltsignale im Datenmaterial. 

1. INTRODUCTION 

The dendrochronological reality usually appears as a messy laboratory. Puzzling 
networks of lots of variables and objects, both often of different kinds, are involved 
(Fritts 1971). Moreover, trees can react in an extremely irregular and unexpected way. 
A part of this complexity takes shape in the features of the raw unprocessed data 
matrix Geffers 1990) consisting of variables (for example different chronologies) and 
objects (e.g. the ring widths in distinct years). As far as the variables are concerned, 
there are often predictands (for example the tree ring widths) and predictors (e.g. 
environmental data) (table 1). 

Table 1 : Schematic representation of a data matrix with predictand and predictor 
variables. 

Predictands Predictors 

e.g. different. trees e.g. different meteorological variables 

Predictands as well as predictors sometimes are split up in different categories (table 
2). Several chronologies of a species can be filed as one type of predictand variable 
and chronologies of another species as a second type. As well, different variable types 
like ring width, vessel area or late wood d~!nsity can be assorted as different kinds of 
predictands. Among the predictors, apart from meteorological variables, there could 
also be variables describing soil characteristics categorised as a second predictor type. 
Also the objects sometimes are arranged in distinct clusters (table 3) : for example the 
juvenile and the adult parts of ring chronologies or a partial chronology before and 
one after forest thinning. Simultaneous clustering within variables and objects 
provokes the most complex data set (table 4). 

Silva Gandavensis 58 (1993) 



New tools for processing dendrochronological data 103 

Table 2 : Schematic representation of a data matrix with different types of 
predictands and predictors. 

Predictands Predictors 

e.g. trees belonging e.g. trees belonging e.g. meteorological e.g. soil variables 
to species' to species 2 variables 

or or 

variable category 1 variable category 2 
(tree ring width) (vessel area) 

Table 3 : Schematic representation of a data matrix with different types of objects. 

Juvenile objects 

Adult objects 

Table 4: Schematic representation of a data matrix with simultaneous variable 
and object clustering. 

variable cluster' 1 variable cluster n 1 

object cluster , -

object cluster m -
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A fundamental condition for a mathematical method to be applied in dendrochrono­
logy, is that it must be able to handle complexity. Tools to process such data should 
be looked for among the methods of numerical ecology (Legendre and Legendre 1984), 
understood as a special category of mathematical ecological methods. Mathematical 
ecology covers the domain where mathematics is applied in ecology and can be split 
up in theoretical deductive ecology and quantitative inductive ecology (table 5). 
Quantitative ecology covers as well ecological statistics as numerical ecology. 
Ecological statistics applies statistics on ecological problems. Numerical ecology 
combines statistical methods with other tools which are not dependent on statistical 
parameters, like mean and variance and are often robust methods, not always bound 
to rigid stastistical assumptions. 

Table 5: Dendrogram of mathematical ecology (after Legendre and Legendre 
1984). 

Mathematical ecology 

1. Theoretical ecology 

2. Quantitative ecology 

2.1. Ecological statistics 
2.2. Numerical ecology 

To process tree ring data, numerous analyses have been proposed. Important 
numerical ecological tools for dendrochronology are eigenvector analyses (Fritts et aI. 
1971), time series analyses (Visser 1986) and other computer intensive methods like the 
bootstrap (Guiot 1990). 

Because they arrange objects or variables or both in diagrams with variance explaining 
axes, the eigenvector methods are sometimes called 'ordinations' (Ramensky 1930; 
Goodall 1954), in human sciences 'scaling'. 

Eigenvector analyses are used in tree ring analysis for two main purposes: (1) for 
calculating a principal or mean chronology (to summarize multidimensional 
information in diagrams of lower dimension) or (2) for calibration aims (to explain 
variance among predictand variables by predictors, by means of transfer and response 
functions). 

The eigenvector methods used in ecology can be split up in different categories (table 
6). A first distinction is made between direct and indirect gradient analysis (Whittaker 
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1967). The resulting ordination axes of an indirect gradient analysis are not depending 
on predictors. The axes could only later, after the main analysis, be interpreted in 
terms of environmental gradients. Principal component analysis is such an indirect 
gradient analysis which is frequently applied in dendrochronology since Fritts et al. 
(1971). Data where the complexity consists of predictor and predictand variables can 
be processed with direct gradient analysis or canonical ordination techniques. Also 
these kind of methods can be found in tree ring literature and again Fritts et al. (1971) 
can be cited when they used canonical ordination to look for linear combinations 
between predictors and predictands. 

Table 6 : Categories of ordinations (after Ter Braak 1988). 

Indirect gradient analysis Direct gradient analysis 

Linear model Principal component analysis Redundancy analysiS 

Unimodal model A factor analysis of Canonical correspondence 
correspondences analysis 

Direct and indirect gradient analysis is only one possible classification of ordination 
methods. Another division depends on the type of model used for the underlying 
gradients : analyses exist with linear and unimodal models. A factor analysis of 
correspondences, proposed for tree ring analysis by Serre (1977), is based upon an 
unimodal model. A general theoretical model for tree ring data should tend more 
towards an unimodal form with .a lower and an upper limit and an optimum value. 
lnvestigating for instance the cambial activity along a long physical temperature 
gradient, diameter growth is not possible or dormant for as well too low as too high 
temperatures, but shows an maximum for "optimal" temperatures. However, tree ring 
data appear frequently to be fairly linear processes, especially when only a short 
interval of an environmental gradient has been sampled. Also Cook (1990) viewed tree 
ring series as intrinsically linear processes, possibly after transforming the ring widths 
to logarithms. 

Ordination methods have the power to reveal trends in complex ecological data sets 
and are therefore in many cases better than calculating chronologies of arithmetic 
means. 

Sometimes however, the description of a principal trend is not of major importance for 
a dendrochronologist looking for sensitive indicators: sometimes one individual 
chronology could be a better indicator for an environmental factor than an eigenvec­
tor. It is for instance a well known fact that free standing trees on poor soils show 
stronger meteorological signals. 
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Furthermore, the complexity of the data set could be too high to be handled by one 
single eigenvector analysis: sometimes two or more ordinations are needed to process 
different parts of a chronology, as well as different groupings of variables. To process 
an extremely complex data set as a whole, no traditional method exists. 
However, some methods out of the domain of artificial intelligence. are considered as 
powerful enough to handle such data. With some machine learning tools for instance 
high quality logical rules can be obtained describing the relation between tree rings 
and environment. In addition with the same methods it might be possible to focus on 
chronologies or objects that are extreme or not corresponding to a main trend, but that 
could reveal an unexpected strong environmental signal. As a consequence these 
techniques are much promising alternative methods of analysing complex data sets. 

Two techniques are being proposed to process tree ring data: redundancy analysis as 
an eigenvector method and the evolutionary learning algorithm as a machine learning 
tool. The general hypothesis to verify is "Redundancy analysis and the evolutionary 
learning algorithm have complementary power to process dendrochronological data." 

2. METHODS 

2.1. Redundancy analysis 

Canonical correlation analysis is a direct gradient analysis processing predictand and 
predictor variables. While the multivariate model of canonical correlation provides a 
powerful technique for summarizing and exploring complex relationships between two 
sets of variables, it is sometimes difficult to interpret and makes a number of 
assumptions about linearity and the homogeneity of variances and covariances which 
are seldom true for an actual set of data Geffers 1990). A critical constraint results from 
the specific algorithm of canonical correlation analysis which makes use of parameters 
estimated through multiple regression. A practical consequence is that the amount of 
objects must be higher than the total number of variables: the number of rings must 
be bigger than the number of chronologies, the environmental variables included. This 
might be a problem for dendrochronological investigations dealing with short 
chronologies, for example from archaeological or historical objects. 

Redundancy analysis is a similar method that doesn't presuppose an upper limit for 
the ratio between variables and objects and is for this reason to be considered as 
powerful in a dendrochronological context, but it has not been applied yet. 

Redundancy analysis is the canonical form of principal component analysis. The aim 
is to explain patterns in the data by fitting lines (components). As components, 
redundancy analysis selects linear combinations of environmental variables that causes 
the least sum of squares. Redundancy analysis has been developed by Rao (1964) and 
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has been implemented in the CANOCO-programma, written by Ter Braak (1988). 

The output of a redundancy analysis can be decoded by means of biplot diagrams. 
Rules for constructing and interpreting biplots are given in Ter Braak (1987) : the 
direction of the vector arrow indicates the direction in which the amount of the 
corresponding environmental variable increases most; the length of the arrow equals 
the rate of change in that direction; the angle between arrows of a pair of variables 
(predictands or predictors) provides an approximation of their pair-wise correlation. 
The biplot is constructed most easily by drawing seperate plots of objects, predictand 
and predictor variables, each one with its own scaling. However, within each plot the 
scale units of the axes must have equal physical lenght. The biplot is obtained by 
superimposing the plots with the axes aligned and the origins of the coordinate 
systems coinciding (Ier Braak 1988). 

2.2. The evolutionary learning algorithm 

The statistical uncertainty of the results of for instance a redundancy analysis can be 
calculated by Monte Carlo permutation testing. Similar tests have been suggested by 
Guiot (1990). 

Tools that combine Monte Carlo methods with pattern recognition are found in 
machine leaming, a branch of artificial intelligence. Based on information about 
concrete cases, in the form of descriptive variables about objects, a machine learning 
programma can assemble so called production rules, rules with IF ... THEN ... -statements. 

The evolutionary learning algorithm, one of the machine learning paradigms, shows 
some analogy with evolution phenomena (Forsyth 1987). The algorithm starts the 
analysis by producing at random lots of rules, describing relationships between the 
variables. A selection of the statistically best rules is made and the programma tries to 
improve this initial population of rules: components of good quality "parent" rules are 
recombined (see "cross over" phenomena) or "mutated" to form new "generations" of 
rules. The rules with the highest quality in terms of predictive power are kept aside, 
others are killed, which refers to "the survival of the fittest"-phenomena. 
The evolutionary learning paradigm has been implemented in the software package 
Beagle (Forsyth 1987). Beagle is the name of Darwin's ship, but here it stands for 
Biologic Algorithm Generating Logical Expressions. Beagle consists of six modules. It 
generates rules that predict a target expression which is a logical formulation of a 
hypothesis. 

2.3. Data set 

To provide for a stringent test for both methods, a data set has been chosen consisting 
of poplar tree rings and meteorological data (Beeckman 1992). The trees grew up in 
rather favourable conditions without apparent limiting factors. Furthermore the 
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chronologies are extremely short: only fifteen years. This causes inevitably problems 
with statistical significance, but also biological problems can't be neglected: a 
considerable part of the chronologies has been formed by young trees for which the 
relations with the environment can be totally different from older trees. 
The trees were sampled along a spacing gradient: from 3,943 (sa~ple tree a) to 259 
(sample tree 0) trees per ha (Beeckman 1992). As a consequence the micro environment 
of the studied trees was obviously different: interference phenomena start later for 
wide planting distances. Because the chronologies were too short a satisfactory 
detrending method could not be found. Except for a logarithmic transformation, the 
data have been standardized by executing principal component or redundancy 
analysis on a correlation matrix. 
The idea behind the choice for such a data set was the assertion that if analyses give 
here satisfactory results, they should work in more normal dendrochronological 
context too. 

3. RESULTS 

3.1. Principal component and redundancy analyses 

To quantify the impact of the planting density on the sample, the trees were 
considered as objects and the years as variables. 

A principal component analysis (first four eigenvalues: 0.70, 0.17, 0.06, 0.03) showed 
that 70 % of the variance can be explained by the first ordination axis. This high value 
results from a sampling of a rather simple (monoclonal) system with uniform 
conditions and with one distinct variance explaining factor. Lamarche and Fritts (1971) 
at the contrary performed a principal component analysis of tree ring data from a vast 
region in Western United States for the period 1931-1962. In their case only 50 percent 
of the variance could be explained by the first four ordination axes. 

To interpret the ordination axis in terms of a physical gradient, a redundancy analysis 
was executed with trees as objects, years as predictand and a variable describing the 
maximum growing area (area potentially available) as predictor. This analysis shows 
that 70 % of the variance can largely be explained by growing area expressed in m2. 
The question arises whether some of the remaining variance can be explained by 
general meteorological variables. 

Therefore, in a next run of redundancy analysis, growing area is considered as a 
covariable to eliminate this main variance explaining factor. This gives an ordination 
with lower eigenvalues (0.17, 0.08, 0.04, 0.03). A biplot shows that the first eigenvector 
of this ordination is an indication for low sunshine and low temperatures, the second 
for high precipitation and the third for high irradiance (figure 1). 
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To evaluate the meteorological effects more directly, the trees are considered as 
predictands, the meteorological variables as predictors and the consecutive years as 
objects. This is a more conventional point of view in dendrochronology. The results 
are summarized in a biplot (figure 2). The trees from wider planting patterns tend to 
have negative correlations with summer temperatures, the others are clearly negatively 
correlated with amount of summer precipitation. 

3.2. The evolutionary learning algorithm 

A hypothesis about the effect of mean summer temperatures on tree ring width is 
formulated as a target expression to be put to a BEAGLE test. As a target expression 
for instance (temperature > 0) was submitted. Because the tree ring widths are 
centralized in 0, with this target expression it was possible to look for rules concerning 
the ring chronologies that express the sensitiveness for summer temperatures higher 
than the average. The quality of the rules is expressed in contingency tables and the 
corresponding chi square or related statistics (table 7). 
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Figure 2: 

Table 7: 
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Contingency table for target expression " temperature > 0" and rule " 
tree 5 > tree 9 ". 

target "temperature > 0" 

true false 

true 7 0 
rule ''tree 5 > tree g" 

false 1 8 

With the target expression (temperature> 0), the rule (tree e > tree i) is producedo 
"tree e" and "tree i" are variables describing the ring widths of the sample trees labelled 
"e" and "i", which grew up in different spacings. 
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This can be read as follows. When the summer temperature is higher than the average 
summer temperature during the period 1974 -1989 (target expression true), than there 
is a good chance that the rule will be true too: ring width of tree e (from a high 
planting density of 1107 trees per ha) will be larger than the ring width of tree i 
(planting density of 642 trees per ha). The Phi-coefficient (related ~th the chi square 
statistic is as high as 87.44. 

The combination of chronology e and chronology i in one production rule seems to 
give a good temperature signal. This result could not be obtained with more 
traditional processing methods. 

4. DISCUSSION 

Redundancy analysis has shown to be powerful to explain variability in tree ring 
patterns of fast growing poplar trees. The data set providing an extreme stringent test 
set for mathematical methods, makes that the analysis can be considered as 
particularly suited to handle chronologies which are much longer and originate for 
instance from alpine or arid regions. 

The same can be concluded regarding the evolutionary learning algorithm. This 
method not only reveals underlying trends in a chronology, but is has also the power 
to focus on- individual chronologies or combinations of chronologies with strong 
signals not necessarily corresponding to general trends. The method also includes 
hypothesis formulation, which gives more scope for the researcher. 

The choice between one method or another depends on the objectives. The two 
methods have complementary value: concrete hypotheses can be formulated based on 
knowledge concerning general trends; down- or upweighting of certain variables in 
an eigenvector analysis is possible with the information from the results of the 
evolutionary learning algorithm. Because Beagle's aim is to find a few simple rules 
that predict a dependent variable or combination of variables, it may throw up some 
unexpected relationships. 

The two methods seem to be powerful enough to be suggested to process 
dendrochronological data, especially when high degrees of complexity are to be 
tackled. 
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