METHOD FOR DRAWING FOREST MAPS BY MEANS OF AN OFFICE COMPUTER

by

R. Goossens and J. De Schuyter

1. Introduction
 O.D.C. 582

Since in forest inventory an increasing number of operations and calculations may be performed automatically, we will attempt in this contribution to map out certain quantities (such as number of trees, basal area, volume, etc.) by means of a modest computer unit.

We used an Olivetti P 203, consisting of a modified calculator Programma 101 and a joined typewriter Tekne 3. The program elaborated to draw forest maps is recorded on a magnetic card and may be entered continuously into the memory of the computer by means of the same card. A broad description of the construction and functioning of the P 203 has been given previously (Goossens [1]). At the same time it was shown how the calculations of the quantities mentioned above could be performed automatically by means of such an office computer. In the contribution below we therefore suppose these quantities already available.

2. Principle

In forest inventory as well as in mapping a network is used, which once applied to the forest map, serves as a basis for the sampling points in the field. The distance between these points or the number of samplings per ha, depends on a certain number of factors, among which the necessary precesion as to this choise plays without doubt an important part (Pardé [3]).

Each point being a centre, a circular plot is marked out in the field (optical method), the area of which is also determined by the precision strived at and the nature and constitution of the forest or stand under discussion. Within this area all diameters are mea-
sured as usual and recorded according the tree species and diameter class. The work in the field finishes with an eventual measuring of the tree heights and the taking of cores (according to the method used). With these data and by means of a computer and a appropiate program (Goossens, [1]) several quantities per ha are calculated such as : number of trees, basal area, increment of the basal area, volume, volume increment, money value of the standing trees and eventually different average trees.

For a given characteristic (e.g. growing stock) each point of the network on the map has a certain value (in our example the amount m^{3} of timber per ha) resulting from samplings in the corresponding points in the field. The drawing of the map amounts only to grouping the points belonging the same class into specific coloured zones or with other means (lines, points,...)

For practical reasons (see below) wathever characteristic that has to be mapped out is assigned 10 classes $\left(\mathrm{K}_{\mathrm{u}}\right)$ with $\mathrm{K}_{\mathrm{u}}=$ $0,1, \ldots, 9$ and u respectively equalling $1,2, \ldots, 10$. The class interval k depends of course on the highest values wich are found, or are to be expected normally, for the characteristic under discussion.
class K_{u}
0
1
2
3
4
5
6
7
9
8
interval
$\mathrm{o} \leqslant \mathrm{P}_{\mathrm{o}}<6 \mathrm{k}$
$\mathrm{k} \leqslant \mathrm{P}_{\mathrm{o}}<2 \mathrm{k}$
$2 \mathrm{k} \leqslant \mathrm{P}_{\mathrm{o}}<3 \mathrm{k}$
$3 \mathrm{k} \leqslant \mathrm{P}_{\mathrm{o}}<4 \mathrm{k}$
$4 \mathrm{k} \leqslant \mathrm{P}_{\mathrm{o}}<5 \mathrm{k}$
$5 \mathrm{k} \leqslant \mathrm{P}_{\mathrm{o}}<6 \mathrm{k}$
$6 \mathrm{k} \leqslant \mathrm{P}_{\mathrm{o}}<7 \mathrm{k}$
$7 \mathrm{k} \leqslant \mathrm{P}_{\mathrm{o}}<8 \mathrm{k}$
$8 \mathrm{k} \leqslant \mathrm{P}_{\mathrm{o}}<9 \mathrm{k}$
$9 \mathrm{k} \leqslant \mathrm{P}_{\mathrm{o}}<10 \mathrm{k}$

The table above gives a survey of the classes K_{u} wich will be used in further calculations, P_{0} being the value in a point with x_{1} and y_{i} as coordinates, situated in our elementary square of the basic network on the map (see fig. 1). As a map is composed of a whole series of similac squares, the problem may for the moment be reduced to one of them. Such a square always consists of a series of four sampling points $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}$ and A_{4}, wich represent in the calculations below the values of the measured or calculated (cfr. average trees) quantities. If we consider A_{1} as starting point and equal the distance between A_{1} and A_{2} (or A_{3} and Λ_{4}) to x_{m} and the distance between A_{1} and A_{3} (or A_{2} and A_{4}) to y_{m}, then these symbols should in principle suffise to elaborate the formulas required

Fig. 1. Elementary square of the network on the forest map $\left(A_{1}, A_{2}, A_{3}\right.$ and A_{4} sampling points and corresponding values measured in the plots).
to calculate the value in a given point $P_{0}\left(x_{1} ; y_{1}\right)$ situated upon or in the elementary square of the network.

Since the drawing of the forest map is left to the typewriter of the office computer, the sides of the square have to be split up into an certain number of steps, as well in the x-as in the y-direction; so that the computer may calculate a series of even-spaced points and so that the typewriter may print them on the right spot by means of the code K_{u}.

We proceed for instance to divide the distance x_{m} into «a» equal parts ($=$ distance between two succeeding characterisics or a multiple of it) and the distance y_{m} into «b» equal parts ($=$ interline or a multiple of it). The value of P_{0} with the coordinates ($\mathrm{x}_{1} ; \mathrm{y}_{\mathrm{i}}$) may now be calculated as follows (see fig. 1) ;

1. First we calculate the value in an auxiliary point $P_{13}\left(0 ; y_{i}\right)$ situated on the line segment $A_{1} A_{3}, y_{i}$ being the distance from A_{1}. This results in :

$$
\begin{equation*}
\mathrm{P}_{13}=\mathrm{A}_{1}+\left(\mathrm{A}_{3}-\mathrm{A}_{1}\right) \frac{\mathrm{y}_{\mathrm{i}}}{\mathrm{~b}} \tag{1}
\end{equation*}
$$

the values for y_{i} varying succeedingly from $0, I, 2, \ldots$ to b
2. Then the value in an auxiliary point $\mathrm{P}_{24}\left(\mathrm{x}_{\mathrm{m}} ; \mathrm{y}_{\mathrm{i}}\right)$ on the line segment $\mathrm{A}_{2} \mathrm{~A}_{4}$ is calculated, y_{1} being also the distance from A_{3}, so that :

$$
\begin{equation*}
\mathrm{P}_{24}=\mathrm{A}_{2}+\left(\mathrm{A}_{4}-\mathrm{A}_{2}\right) \frac{\mathrm{y}_{1}}{\mathrm{~b}} \tag{2}
\end{equation*}
$$

y_{1} having the same values.
3. Since P_{13} and P_{24} are now known, the value of P_{0} on the line sigment $\mathrm{P}_{13} \mathrm{P}_{24}$, may be calculated according to the same principle as follows :

$$
\begin{equation*}
\mathrm{P}_{0}=\mathrm{P}_{13}+\left(\mathrm{P}_{24}-\mathrm{P}_{13}\right) \frac{\mathrm{X}_{1}}{\mathrm{a}} \tag{3}
\end{equation*}
$$

x_{1} having succeedingly the values $1,2,3, \ldots$ a
Once P_{o} is calculated, the computer program examines to wich class interval the value belongs, which results in a code K_{u} as shown above. This number (going from 0 till 9) is printed by the typewirter on the place wich precisely corresponds to the coordinates used in the calculations.

Fig. 2 (A) presents a practical example of a similar elementary square of the network, having $\mathrm{a}=10$ and $\mathrm{b}=12$. The specific construction of the typewriter accounts for the fact that the horizontal definition (12 lines) differs from the vertical one (10 lines). Taking in account this kind of differences, it is possible to arrive at the square wanted. Equally possible is the combination a $=5$ and $b=6$ (see fig. 2B). In both cases an open space is horizontally left between each K_{u}-value, whereas the vertical moves of the carriage (line space) are performed in position 1.

Fig. 2. Elementary squares printed by the typewriter of the Olivetti P203. (A) $-2^{\circ} \times 2^{\text {a }}$ (B) $-1^{*} \times 1^{*}$

According to the precision required, thing may be adapted to the circumstances.

Fig. 2 clearly demonstrates why it is necessary to number the classes from 0 till 9, because otherwise a code of two digits would result in blending and an unclear iepresentation.

3. Procedure

The general procedure is summarized by the flowchart (appendix 1). The program card being inserted, the class interval k is entered into the memory by means of the keyboard of the calculator. This has to be done only once for each forest map that has to be drawn. As soon as the carriage of the typewriter is arranged in the tight position, the data $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}$ and A_{4} can be entered into the memory also by means of the keyboard, so that the calculations and the printing of an elementary square of the network on the forest map are performed automatically.

In the beginning of the program x_{1} equals y_{i} which equals 0 . After $\mathrm{P}_{13}, \mathrm{P}_{24}$ and P_{o} are succeedingly calculated the last value is compared with $\mathrm{n}_{\mathrm{u}} \cdot \mathrm{k}$. This test starts with $\mathrm{n}_{\mathrm{u}}=1$ and $\mathrm{K}_{\mathrm{u}}=0$. If P_{o} surpasses $n_{u} \cdot k, n_{u}$ and K_{u} are raised, with one unit, whereafter the same test is carried out as many times as required for P_{0} to become equal to or smaller than $n_{u} \cdot k$, so that the carriage moves one position for wards and prints the value K_{u}. Then x_{i} is increased with one unit and tested against the value of x_{m}. Is the latter still higher, the calculations start again for the following point on the same line etc.... If on the other hand $\mathrm{x}_{\mathrm{i}}=\mathrm{x}_{\mathrm{m}}, \mathrm{x}_{\mathrm{i}}$ is reset to zero and one unit is added to y_{1}. Then the carriage of the typewriter returns to the margin and the computer calculates again all the P_{o}-values on that following line, Similar calculations only take place when y_{n} surpasses y_{f}. In case y_{n} is equal to y_{t}, y_{1} is again fixed to zero and the calculations finished. In this way a complete elementary square of the network is calculated and printed. Appendix 2 surveys the complete program.

Four new points A_{1}, A_{2}, A_{3} and A_{4}, being introduced, the whole program is carried out again. It is important first to finish all the elementary squares situated one under another so as not to be obliged to adjust continually the margin of the carriage.

Fig. 2 show that in the elaboration of an elementary square the last column as well as the bottom line are not printed, This was provided for in the program, since the elementary squares below as well as the one next to it have respectively this line and this column in common.

Appendix 3 gives an example. The bottom page comes out of the typewriter and represents the distribution of the different

Flowchart. - Program for printing the elementary squares of the network on the map.

NSTRUCTIONS

regist. 1		regist. 2		regist. F		regist.E		regist. D		content of register		
1	A V	33	F / X	65	S	97	S	128		M	operat	onal
2	S	34	A / T	66	S	98	S	130		A	oper	al
3	E / T	35	R S	67	5	99	S	131		R	opera	onal
4	/o	36	D/-	68	A 2	100	S	132		b		
5	B W	37	:	69	+	101	s	133		B		
6	5	38	D/+	70	E / I	102	A γ	134		c		
7	B / T	39	D / \pm	71	F / t	103	\pm	135		C		
8	S	40	A/T	72	A/T	104	-	136		d	subtot	
9	B T	41	D/S	73.	R S	105	/ X	137		D	-	
10	S	42	E \uparrow	74	D/-	106	F *	138		E	k	
11	C/T	43	E/ \downarrow	75.	1	107	10	139		E	n_{u} i inst	ruct.
12	S	44	D	76	-	108	C W	140		f	x inst	ruct.
13	C T	45	C 2	77	/W	109	A/W	141		F	y;inst	ruct.
14	B Y	46.	A/V	78	E/S	110	A / Y	142				
15	C/ 1	47	D \downarrow	78	W	111	C Y	143		inp	data	digits
16	$\mathrm{B} /-$	48	$\mathrm{E} /+$	80	S	112	S	144			k	4
17	F X	49	D 1	84	S	113	S	145				
18	A/T	50	$E \pm$	82	S	114	S	146				
19	R 3	51	A/T	83	5	115	S	147			A_{2}	15
20	D/ X	52	D / \downarrow	84	A W	116	S	148			A_{3}	15
21	D	53	+	85	F/*	117	S	149			A_{4}^{3}	15
22	B/+	54	E I	86	F \downarrow	118	S	150				
23	D/I	55.	B 2	87	A/ \uparrow	119	S	151				
24	C \downarrow	56	D/ \downarrow	${ }^{88}$	D/ \downarrow	120	S	152				
25	B -	57	D -	89	$+$	121	S	153				
26	F X	56	/v	90	F \pm	122	S	154				
27	A / T	59	$\mathrm{E}<$	91	F F	123	S	155				
28	R S	60	\uparrow	92	A/T	124	S	156				
29	D/X	61	F / \downarrow	93	R S	125	S	157				
30	:	62	A/T	94	D/X	126	S	158				
31	B +	63	D/ \downarrow	95	Y	127	S	159				
32	D/-	54	Z	96	S	128	S	160				
constants on card					constants on card							
									1			
									1			
									1			
1. Start program $\longrightarrow \mathrm{V}$ 2. Input k 3. Input A_{1}, A_{2}, A_{3} and A_{4}												

Appendix 2.
growing stock classes ($\mathrm{m}^{3} / \mathrm{ha}$) over a part of a fictitious woodcomplex. The distance between the sampling points ammounts to 70.7 m , which corresponds to two plots a ha. As to the reproduction and the drawing-speed, the combination $\mathrm{a}=5$ and $\mathrm{b}=6$ was used, so that an elementary square of $1^{\prime \prime} \times 1^{\prime \prime}$ appears on the bottom page. On top of it cames the proper forest map, (a blanco basical map for all possible mapping work) reproduced on transparent material, the scale being $1^{\prime \prime}$ to 70.7 m . This rather unusual scale doesn't present the least difficulty since the map is not a final one and it may be reduced easily to an usual scale in final reproductions.

As shown in appendix 2, it is now rather simple to draw and represent on the forest map the situation of the different growing stock classes or other characteristics of the forest.

4. Conclusions

The contribution above shows that something may be achieved in the field of the automation of forest mapping with limited means too.

Although the calculations and drawing for an elementary square of $1^{\prime \prime} \times 1^{\prime \prime}$ scarcely take less time than in case the calculations would be performed by an ordinary calculation machine and the drawing manually, this method has nevertheless some important advantages. In the first place this time is spared entirely for other activities, except for the entering of the data $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{1}$ and A_{2}. Secondly the precision of the method is much greater, since the space within the elementary square is thoroughly searched; on the contrary, when using the manual method, only the position of the class-limits on the sides of the squares are calculated and drawn and in some cases also the position of these limits before one diagonal. According to the choice of one of both diagonals the results therefor do differ.

Finally this method almost excludes errors, which is certainly not be said of the classical method. Add to that, that in some cases it is not always clear how the borderlines between the classes eventually have to be drawn.

A similar difficulty is avoided by our method because the complete surface is covered by figures from 0 till 9 (see appendix 3) and the borders are always situated at the transition from one figure to another. Besides the speed of calculating and drawing which is still to slow, the fact that a group of four data has always to be entered is in our opinion a far from smart procedure. The former drawback will be dispersed within the future as office computers

will became quicker and more polyvalent. The latter difficulty could be overcome by entering the data automatically by means of a «punch read-unit». In the near future it probably will become possible to join such a unit to the Olivetti P. 203.

BIBLIOGRAPHY

1. GOOSSENS, R. - «Contribution to the Automation of the Calculations Inyolving the Forest Inventory with the Aid of an Office Computer». Sylva Gandavensis (20) - 1970.
2. JAMES, ML., SMITH, G.M. and WOLFARD, J.G. - «Analog and Disital Computer Methods» - International Textbook Company, Pennsylvania 1965
3. PARDÉ, J. - «Dendrométrie» - Imprimerie Louis-Jean; Cap 1961.

SUMMARY

Method for Drawing Forest Maps by means of an Officer Computer

In this article we tried to perform the drawing of forest maps, together with the calculations involved, automatically by means of relatively simple aids.

The computer unit used is an office computer Olivetti P203. As an example the growing stock (in $\mathrm{m}^{3} / \mathrm{ha}$) was mapped out. The proper inventory in the field is done according to the classical method by means of a previously fixed network of squares ($70,7 \mathrm{~m} \times 70,7 \mathrm{~m}$), which corresponds to two plots a ha.

The quantity which is measured and mapped out (in this case the growing stock) is in a similar form not very useful in mapping. Therefore a division in classes (K_{u}) numbered from 0 to 9 , is set up. An appropriate program calculates for a certain number of points within this elementary square, to which class they have to be assigned, whereas the typewriter prints the corresponding code number on the right place.

Fig. 1 and the formulas (1), (2) and (3) represent the principle of the calculations while fig. 2A and B reproduce the results printed by the typewriter for a elementary square of respective $1^{\prime} \times 1^{\prime}$ and $2^{\prime} \times 2^{\prime \prime}$. The whole of similar network of squares eventually results in a basical document, on which the existing forest map with an adapted scale is laid (see appendix 3) and the class limits are drawn.

If desirable, the scale may be adapted when the forest map under discussion is definitely reproduced.

SAMENVATTING

Methode voor het tekenen van boskaarten met behulp van een bureelcomputer.

Met dit artikel werd een poging gedaan om ook het tekenen van boskaarten, samen met de berekeningen dic hiermec gepaard gaan, met behulp van relatici cenvoudige hulpmiddelen te automatiseren. De hierbij gebruikte computereenheid bestaat uit een bureelcomputer Olivetti P203. Als voorbeeld wordt de voorraad (in m^{3} per ha) in kaart gebracht. De cigenlijke inventarisatie op het terrein geschiedt volgens de klassieke manier met behulp van een vooraf gefixeerd kwadraatnet van $70,7 \mathrm{~m} \times 70,7 \mathrm{~m}$, wat overeenstemt met twee opnamepunten per ha. De gemeten en in kaart te brengen grootheid (in dit geval de voorraad) kan moeilijk onder dergelijke vorm verder worden gebruikt bij de kartering. Daarom dient cen indeling in klassen (K_{u}) doorgevoerd, genummerd van 0 tot en met 9 . Een aangepast programma berekend voor een zeker aantal punten
binnen dit kwadraatnet gelegen, in welke klasse ze dienen ondergebracht, terwijl de schrijfmachine het desbetreffende codenummer op de juiste plaats uitdrukt.

Fig. 1 en de formules (1), (2) en (3) geven het princiepe van de berekeningen aan, terwijl fig. 2 A en B het resultaat van de schrijfmachine reproduceert bij cen kwadraatnet van respektievelijk $1^{\prime \prime} \times 1^{\prime \prime}$ en $2^{\prime \prime} \times 2^{\prime}$.

Het geheel van dergelijke netten vormt uiteindelijk een basisdokument waarop dan de bestaande boskaart met nangepaste schaal wordt gelegd (zie bijlage 3) en de klasse begrenzing overgetekend. Indien wenselijk, kan bij de definitieve reproduktie van de boskaart in kwestie, de nodige schaalaanpassing worden doorgevoerd.

