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STRIBECK AND TRACTION CURVES FOR ELLIPTICAL CONTACTS: 
ISOTHERMAL FRICTION MODEL 
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Abstract: This paper deals with the prediction of the Stribeck and traction curves, by proposing a mixed lubrication 
model for highly loaded elliptical contacts. The model represents an extension on the mixed lubrication model of 
Gelinck and Schipper and comprehends both the asperity component or the so called boundary lubrication 
component (BL) and the elastohydrodynamic component (EHL). The asperity component is calculated from a fully 
deterministic contact perspective, where an equivalent rough surface is in contact with a smooth and rigid surface. In 
EHL regime, the film thickness is calculated according to Nijenbanning et al. and the separation for the asperity 
component is derived from Johnson, with a small adaptation, which was possible due to the deterministic contact 
model approach. In this way, the separation is calculated from the volume conservation theory of Johnson and even if 
this can be negative, the film thickness remains above zero permitting the calculation of highly loaded contacts. For 
the traction curve calculation, an elastic-plastic approximation for BL micro-contacts as proposed by Gelinck and 
Schipper for line contacts is used. 
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1 INTRODUCTION 
The tool which controls friction between interacting 
surfaces is lubrication, which has the effect of 
decreasing friction, making the lubricated mechanism 
more reliable. In another perspective, lubrication is 
present as a negative effect, in places where friction 
should be high, like traction systems, i.e. wheel-rail 
contacts. 

 
Fig. 1 Generalized Stribeck curve. 

For rolling to sliding contacts, three lubrication regimes 
are distinguished: the boundary lubrication (BL) regime, 
where the velocity between the contacting bodies is low 
and the load is carried solely by interacting asperities of 
the opposing surfaces, the elasto-hydrodynamic 

lubrication (EHL) regime, at high velocity, where the 
load is carried by the pressure generated in the 
lubricant (in this case friction is controlled by shearing 
the lubricant) and the transition regime between these 
two lubrication modes is represented by the mixed 
lubrication (ML) regime where the load is carried by the 
asperities as well as the pressure generated in the 
lubricant. All three regimes are schematically visualized 
in Fig. 1 in which friction is depicted as a function of the 
sum velocity of the components in contact. In this figure 
friction for the sliding and for the rolling contact 
situation is shown. For pure rolling, due to the absence 
of sliding only rolling friction is present which is one of 
more orders lower compared to sliding friction.   
The variation of the coefficient of friction with velocity, 
over the above presented lubrication regimes, 
represents the so called Stribeck curve. For the 
prediction of the Stribeck curve for line contacts, 
Gelinck and Schipper [1] used the elastic contact 
model of Greenwood and Williamson [2] for the 
asperity contact component and Moes function fit [3] for 
the central film thickness in EHL component. The 
model was further extended to highly loaded line 
contacts by Faraon [4], where the asperity component 
was solved deterministic, using Zhao’s elasto-plastic 
model [5] and the separation was calculated by using 
the volume conservation model of Johnson [6]. 
The present paper extends the previous mentioned 
model for elliptical contacts including the slip 
component over the entire lubrication regimes. Next, by 
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using an elastic plastic shear model for boundary layer, 
traction curves are predicted in which the coefficient of 
friction is represented as a function of roll/slide (slip) 
ratio. 
 

2 MIXED LUBRICATION MODEL 

2.1 Elastohydrodynamic component 
For the hydrodynamic component, the first parameter 
to calculate is the film thickness. In order to simplify the 
calculation and to have a small number of variables, 
dimensionless numbers were introduced. 
The first set of dimensionless numbers is defined after 
Dowson and Higginson [7]: 
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where the number G  is referred to the lubricant, h  to 
the film thickness,  ΣU  to the velocity and  W  to the 
load respectively. 
The second set consists of three numbers and are 
defined after Moes [3]: 
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where H is the film thickness number, M is the load 
number and L  is the lubricant number. 
Using these numbers, the system of three equations 
which describes an EHL elliptic contact (Reynolds 
equation, film shape and load balance) was solved 
numerically by Nijenbanning et al. [8] resulting in a film 
shape and pressure distribution. 
It must be mentioned that in the Reynolds equation, the 
viscosity of the lubricant was considered to vary with 
pressure according to Roelands equation [9], which 
reads: 
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After computing the results, an equation for the central 
film thickness was derived by curve fitting the 
numerical results using the dimensionless numbers: 
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where, 00H  is a constant, RIH  is the rigid-isoviscous 
asymptote, EIH  the elastic-isoviscous asymptote, RPH  
the rigid-piezoviscous asymptote and EPH  the elastic-
piezoviscous asymptote. 
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where yx RR=ϑ  is the ratio of the reduced radius of 
curvatures in and perpendicular to the rolling/sliding 
direction. 

2.2 Asperity component 
The surface is measured with an interferometer and 
then it is exported in a way it can be used in a 
microcontact model. Using the 9 point summit definition 
[10], every asperity is computed as ellipsoids 
determined by height iz  and two radii of curvature in 
the main directions. The contact between asperities 
and the counter surface is assumed to be elastic and 
the contact area and normal load is determined 
according to the Hertz theory. 
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Fig. 2 Contact between a smooth and a rough surface. 

The asperity contact area CA  and the load carried by 
asperities CF  are given by summation of the individual 
contributions of each asperity: 

( )∑
=

=
N

i
iiC wFF

1

 (11) 

( )∑
=

=
N

i
iiC wAA

1

 (12) 

where sii hzw −=  is the asperity indentation or 
deformation depth and N  is the number of asperities 
in contact. 

2.3 Separation 
In order to calculate the separation in the BL regime 
the film thickness according to Johnson et al. [6] is 
used. Here the film thickness is defined by the average 
fluid volume between two rough surfaces divided by 
nominal contact area. The statistical formulation of the 
above mentioned film thickness proposed by Johnson 
is: 
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where ch is the film thickness, sh  is the separation and 

( )zf  is the Gaussian distribution of the asperities. With 
this definition, the volume of the deformed asperities is 
ignored, by limiting the surface points coordinate to a 
maximum equal with the separation. A different 
approach is proposed here, where the volume of the 
deformed asperities also preserves. The deterministic 
formulation is: 
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where n  is the number of heights and jz  is the height 
relative to center line average (CLA). The equivalent 
statistical definition is: 
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Here, the volume described by the deformed material is 
taken into account assuming that the material is 
incompressible and its volume preserves as well. This 
assumption is made for the separation calculation, the 
asperity contact model is calculated according to the 
Hertz theory. 
Using this definition, even if the separation can become 
negative, the film thickness always remains positive. 

2.4 The model 
Mixed lubrication is the transition regime between BL 
and EHL. Here, the coefficient of friction takes values 
between the coefficient of friction of the other regimes 
and the load is carried by the BL and the EHL force 
component: 

HCN FFF +=  (16) 

Where CF  is the load carried by asperities and HF  is 
the load carried by lubricant. 

 
Fig. 3 Pressure distribution in an ML contact. 

In terms of pressure, Eq. 16 is written as [6]: 

HCN ppp +=  (17) 

Based on this equation, two coefficients 1γ  and 2γ  are 
introduced [6]: 
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The above defined coefficients are mutually dependent 
through Eq. 19. 
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Using these two coefficients and combining a 
deterministic multi asperity contact model with the EHL 
theory, the entire Stribeck curve can be computed. 
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The hydrodynamic component is calculated using the 
1γ  coefficient. Making the substitutions [6], 

1γNN FF →  and 1'' γEE →  in Eq. 4-5 the central 
film thickness for an elliptical contact becomes: 
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The constant 00H  and the four asymptotes RIH , EIH , 

RPH  and EPH  remains the same as presented in Eq. 
6-10. The dimensionless film thickness CH  is given by 
Eq. 2. 
The pressure carried by the asperities is calculated 
from the load carried by the asperities Eq. 11 and the 
real contact area Eq. 12: 

C

C
C A

F
p =  (22) 

Knowing the mixed lubrication regime, means knowing 
the load carried by asperities CF , the load carried by 
the lubricant HF  and the film thickness Ch . In order to 
find these values, a system of three equations has to 
be solved: 
• Load balance Eq. 16. 
• Film thickness Eq. 14 using Eq. 20 in which the 

definition of Johnson [6] is used. 
• Finally, the pressure calculated from the 

deterministic microcontact model Cp  given by Eq. 
22 must be equal with the central mean pressure of 
the elliptical contact. 

Solving this system of three equations with three 
unknowns, the coefficient of friction in ML can be 
computed as presented further. The solution scheme of 
the solver is presented in Appendix A. 

2.5 Friction force 
The velocity between two moving surfaces can be 
regarded as a superposition of a pure rolling and a 
pure sliding motion. In Fig. 4 are plotted the individual 
velocities of the moving surfaces as well as their sum 

21 vvv +=+  and their difference or the sliding velocity 

21 vvvdif −= . In the same figure, lines for constant 

sliding velocity, constant sum velocity and constant slip 
are drawn. The slip or slide-to-roll ratio is defined as: 
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In Fig. 4 (b), if the coefficient of friction is plotted 
perpendicular to the velocity field, each constant slip 
line in the velocity field represents a Stribeck curve. A 
traction curve (most frequently used in EHL) represents 
the coefficient of friction evolution by varying the slip, 
while keeping the sum velocity constant. 

 
Fig. 4 Velocity field for two moving surfaces [11]. 

The friction force in EHL lubricated contacts is caused 
by shearing the lubricant. In BL, the friction force is 
caused by shearing the boundary layer existing 
between the contacting asperities. The level of friction 
is often expressed by the so called shear rate γ  
defined as: 

c
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h
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where Ch  is the separation between the opposing 
surfaces. 

2.5.1 Friction in EHL 
In the EHL regime, friction is caused by shearing the 
lubricant in the contact. The shear stress Hτ  in the 
lubricant is defined as a function of the shear rate γ  
and using the Eyring model, this is: 
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Integrating the shear stress over the contact area, the 
friction force is obtained: 

( )∫∫=
HA

HHEHLf dAF γτ ,  (26) 

where CnomH AAA −=  is the hydrodynamic contact 
area. The friction force generated by the EHL 
component is expressed by: 
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2.5.2 Friction in BL 
The friction in BL regime is caused by shearing the 
boundary layer between the contacting asperities. 
Integrating the shear stress Cτ  over the asperity 
contact area, the friction force generated by a pair of 
asperities in contact is obtained. So, the friction force in 
the boundary lubrication regime is equal with the sum 
of all contacting asperities: 
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Considering the friction force in the asperity contact to 
be of Coulomb type i.e. CiCiC pf ⋅=τ , with a constant 
value of the coefficient of friction Cf , the friction force 
in the BL regime for the simple sliding situation is 
written: 
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where the Coulomb coefficient of friction Cf  is 
experimentally determined. 
Eq. 29 gives the value of the friction force in BL for 
simple sliding contacts. However, in rolling to sliding 
contacts, taking into account the slip for the BL regime, 
there is no theoretical model. The slip is incorporated in 
the shear rate, but since in the presented model the 
friction in the asperity component is considered to be of 
Coulomb type, the shear stress of the boundary layer 
does not change with the shear rate. Therefore, an 
arctangent function fit as used by Gelinck [12] for the 
traction curve in BL for line contacts is also used here. 
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A generalized traction curve calculated with Eq. 30 is 
shown in Fig. 5. 

 
Fig. 5 Schematic traction curve in BL. 

When operating in the BL regime and increasing the 
slip, while the sum velocity is kept constant, the 
coefficient of friction will increase from zero when 

%0=S  (pure rolling) to the Coulomb value Cf  when 
%200=S  (simple sliding). A parameter epS  is 

introduced, which is a measure for the transition from 
elastic to plastic behavior of the boundary layer. This 
parameter is determined experimentally. 
Combining Eq. 29 and Eq. 30 will result in an 
expression for the friction force in the BL regime: 
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2.5.3 Friction in ML 
The friction force in the ML regime is given by summing 
the friction force generated by the asperities in contact 
and the friction generated by shearing the lubricant: 

EHLfBLfMLf FFF ,,, +=  (32) 

Substituting Eq. 27 and Eq. 31 in Eq. 32 the formula for 
the coefficient of friction in ML is determined: 
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After solving the ML regime (load carried by asperities, 
load carried by lubricant and the separation), the 
coefficient of friction can be computed using Eq. 33 
over the entire range of lubrication regimes. 
If the slip S  is kept constant and the sum velocity +v  is 
varied, the result of the presented ML friction model, 
finalized with Eq. 33, is a Stribeck curve. If the sum 
velocity is kept constant and the slip is varied, the 
output of the model is the traction curve. 

Cf  
f  

epS  
epS−  

Slip 
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3 RESULTS AND DISCUSSIONS 

3.1 Stribeck curve 
The results of the friction calculations are presented in 
Fig. 6. For comparison, the calculation for a line 
contact, for the same contact pressure is given. The 
line contact is validated with experiments [4]. Different 
results can be obtained from the model, as real contact 
area, number of asperities in contact, load carried by 
the asperities, load carried by the lubricant, separation 
between the surfaces and most important the variation 
of the coefficient of friction as a function of velocity. 
The input parameters used in the calculation are 
presented in Table 1. 

Table 1 Input parameters. 
Prope

rty 
Value Unit Description 

n 1.1·1011 1/m-2 Density of asperities 
β 8.3·10-6 m Average radius of 

asperities 
σs 7.6·10-8 m Standard deviation of 

asperities 
E’ 231 GPa Combined elasticity 

modulus 
η0 0.02 Pa·s Viscosity 
τ0 2.5 MPa Eyring shear stress 
α 2·10-8 Pa-1 Viscosity – pressure 

coefficient 
z 0.679 - Viscosity – pressure 

index 
Rx 10·10-3 m Radius in x (rolling) 

direction 
Ry 40·10-3 m Radius in y direction 
FN 100 N Normal load 
fc 0.13 - Coefficient of friction in 

BL 

3.1.1 Model check by comparing with equivalent 
line contact 

In Fig. 6 (Stribeck curves) are plotted the coefficient of 
friction (left y axis) and dimensionless separation, 

σsh , σ  standard deviation roughness, (right y axis) 
as a function of velocity within the specified range. In 
general, the coefficient of friction decreases in the ML 
regime as the film thickness increases with velocity. 
Nijenbanning [8] proposed an equivalent line contact 
for comparing the film thickness given by Eq. 4 with the 
film thickness calculated for line contacts [3]. A similar 
model is proposed here but slightly different. For a 
given elliptical contact, the equivalent line contact is the 
contact having the same half width in the rolling 
direction and the same mean contact pressure at the 

same normal load. So for given xR , yR and NF , the 
equivalent line contact will be dimensioned as follows: 

mx

N
c pa

F
B

⋅⋅
=
2

 (34) 

m

x
c p

aE
R

⋅

⋅⋅
=
16

'π
 (35) 

Using the above dimensions for the line contact with 
the same normal load as used in the elliptical situation, 
the mean contact pressures and the half widths in 
rolling direction in both situations will be equal. The 
dimensions of the equivalent cylinder for the input 
geometry from Table 1, according to Eq. 34 and 35 are: 

6.0=cB  mm and 8.10=cR  mm. 
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Fig. 6 Comparison between the elliptical contact (□) 
and the equivalent line contact (+). 

The results are very close. There is a small difference 
for the coefficient of friction at the transition between 
BL and ML regime. 

3.1.2 Influence of load 
As can be noticed in Fig. 7, the transition between the 
different lubrication regimes is hardly influenced by the 
normal load, the ML regime however extends over a 
wider velocity range and the coefficient of friction is 
lower with increasing load in the low velocity region. 
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Fig. 7 Stribeck curve and separation for different 
normal loads: ◊ 10 N (281 MPa), ∆ 50 N (481 MPa), □ 
100 N (606 MPa), ○ 200 N (764 MPa) and + 300 N 
(874 MPa). 

3.1.3 Influence of roughness 
In order to study the influence of the surface roughness 
on the coefficient of friction and separation curve, 
several surfaces with Gaussian heights distribution 
were randomly generated and associated with the 
same macro geometry and external factors as 
presented in Table 1. 
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Fig. 8 Effect of the statistical roughness parameters σs 
(standard deviation of asperity heights) on Stribeck 
curve and separation; standard deviation of roughness 
of: ◊ 0.06, ∆ 0.07, □ 0.08 and ○ 0.09 µm respectively. 

In Fig. 8 it can be noticed that the Stribeck curve shifts 
to the right with increasing roughness, which makes 
sense because when the standard deviation of the 
roughness increases, then the separation between the 
two surfaces has to be larger to have lift off (full 
separation between the surfaces). 
Because the presented model is deterministic, the 
roughness influence discussion is possible with 
different generated surfaces using as input the 
standard deviation. In which case, for each generated 
surface, the average radius of the summits is 

decreasing with decreasing the standard deviation of 
the asperity heights distribution. In the four situations 
presented above the average radius of the summits 
decreased from 11 microns for the smooth surface to 7 
microns for the rough one. 

3.1.4 Influence of viscosity 
The same surface and inputs were chosen as 
presented in Table 1 to study the effect of viscosity on 
the Stribeck curve for elliptical contacts. 
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Fig. 9 Influence of viscosity η0 on the Stribeck curve 
and separation. Viscosity of ◊ 0.008, ∆ 0.012, □ 0.02, ○ 
0.04 and + 0.08 Pas respectively. 

As expected, the film thickness at the same velocity is 
higher when a more viscous lubricant is considered. 
Therefore the ML regime shifts to the left while the 
friction in the EHL regime increases due to increasing 
of viscosity. 

3.2 Traction curve 
In Fig. 10 the coefficient of friction is plotted as a 
function of slip for different values of sum velocity.  
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Fig. 10 Traction curves at different velocities. Sum 
velocity of ◊ 0.01, ∆ 0.1, □ 0.2, ○ 0.4 and + 1 m/s 
respectively. 
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The input parameters for this calculation are presented 
in Table 1. 
As can be seen the coefficient of friction is increasing 
from 0 (pure rolling) until it reaches the corresponding 
value for simple sliding as the calculated Stribeck curve 
Fig. 6 – Elliptical contact. At low velocity (0.01 m/s) the 
coefficient of friction is increasing from nearly zero to 
0.13 after the slip is exceeding approximately 5%. 
 
In another paper the effect of heat generation in the 
contact on friction, Stribeck curve and traction curve, is 
discussed [13]. 

4 CONCLUSIONS 
A mixed lubrication friction model is developed for 
lubricated elliptical contacts. A good agreement is 
found between the presented elliptical model and the 
proposed equivalent line contact. Different parameters 
were varied in order to study their influence on the 
Stribeck curve and separation. In the present case, the 
variations noticed were similar to the existing friction 
model for line contacts. The most significant influences 
in the Stribeck curve are in the ML regime which shifts 
to the left (the coefficient of friction decreases) with 
increasing the normal load and the viscosity of the 
lubricant and with decreasing surface roughness. Not 
less important is the EHL regime which shifts up with 
increasing both normal load and viscosity of the 
lubricant. Of course, the roughness in EHL regime has 
no influence on the friction level. Finally, since the 
friction in BL regime is of Columbian type, none of the 
above parameters influences the friction level in that 
regime. 

NOMENCLATURE 
 ax = half width of the contact area in rolling 

direction, [m] 
 AC = real contact area, [m2] 
 AH = hydrodynamic area, [m2] 
 Anom = nominal contact area (Hertz), [m2] 
 Bc = width of the equivalent cylinder, [m] 
 E’ = combined elasticity modulus, [Pa] 
 f = coefficient of friction, [-] 
 fC = coefficient of friction in BL, [-] 
 FC = load carried by asperities, [N] 
 FH = load carried by lubricant, [N] 
 Ff, BL = friction force in the contacting asperities, [N] 
 Ff, EHL = friction force in the lubricant, [N] 
 Ff, ML = friction force in ML regime, [N] 
 FN = total normal load, [N] 
 G = dimensionless lubricant number, [-] 
 h  = dimensionless film thickness, [-] 
 hs = separation, [m] 
 hc = central film thickness, [m] 
 H = dimensionless film thickness, [-] 

 L = lubricant number, [-] 
  M = load number, [-] 
 N = number of contacting asperities, [-] 
 hc = central film thickness, [m] 
 p = pressure, [Pa] 
 p0 = ambient pressure, [Pa] 
 pm = mean contact pressure, [Pa] 
 pC = pressure carried by asperities, [Pa] 
 pH = pressure carried by lubricant, [Pa] 
 pN = pressure exerted by the normal load, [Pa] 
 pr = constant (pr=1.962×108), [Pa] 
 Rc = radius of the equivalent cylinder, [m] 
 Rx = combined radius in x (rolling) direction, [m] 
 Ry = combined radius in y direction, [m] 
 S0 = viscosity - temperature index, [-] 
 S = slip, [-] 
 Sep = slip at the transition from elastic to plastic 

behaviour of the boundary layer, [-] 
 T0 = reference temperature, [°C] 
 T = temperature, [°C] 
 tg(αv) = slope of the Eyring shear stress function of 

velocity, [-] 
 tg(αp) =  slope of the Eyring shear stress function of 

pressure, [-] 
 ΣU  = dimensionless velocity number, [-] 
 v+ = sum velocity, [m/s] 
 vdif = sliding velocity, [m/s] 
 W = dimensionless load number, [-] 
 z = viscosity - pressure index, [-] 

Greek symbols 
 α = viscosity - pressure coefficient, [-] 
 γ  = Shear rate γ =vdif/hc, [1/s] 
 γ1,2 = Johnson’s factors, [-] 
 ϑ  = ratio of the reduced radius of curvatures, [-] 
 η = viscosity, [Pa·s] 
 η0 = viscosity at ambient pressure, [Pa·s] 
 η¥ = constant (η¥=6.315×10-5), [Pa·s] 
 τ00 = reference shear stress, [Pa] 
 τ0 = Eyring shear stress, [Pa] 
 τH = shear stress of the lubricant, [Pa] 

Abbreviations 
 BL = Boundary Lubrication 
 ML = Mixed Lubrication 
 EHL = Elasto Hydrodynamic Lubrication 
 RI = Rigid/Isoviscous asymptote 
 EI = Elastic/Isoviscous asymptote 
 RP = Rigid/Piesoviscous asymptote 
 EP = Elastic/Piesoviscous asymptote 
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Appendix A 
Solving the ML regime means in fact, determining the 
load carried by the asperities. This is done by following 
the solution scheme in Fig. 11. 

 
Fig. 11 Solution scheme for the calculation of the 
friction coefficient in ML regime. 
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