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Abstract: This study presents an intermediate step in prosthesis design, by introducing a newly developed 
two-dimensional mathematical, and a three-dimensional computational knee model. The analytical model is 
derived from Newton’s law with respect to the equilibrium equations, thus based on theoretical 
assumptions, and experimentally obtained parameter. The numeric model is built from an existing 
prosthesis, involving three parts as patella, femur and tibia, and currently it is under development. The 
models are capable to predict – with their standard deviation – the patellofemoral (numerically tibiofemoral 
as well) forces in the knee joint during squatting motion. The reason why the squatting is investigated is due 
to its relative simplicity and the fact, that during the movement the forces reach extremity in the knee joint. 
The obtained forces – as a function of flexion angle – are used firstly as fundaments to the knee design 
method, and secondly to extend the results related to the existing isometric kinetics, where one of the newly 
obtained functions appears as an essential – and so far missing – input function. Most results are 
compared and validated to the ones found in the relevant literature and put into a dimensionless form in 
order to have more general meaning. 
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1 INTRODUCTION 

The widespread occurrence of the various types of arthritis does not only result in significant loss in 
manpower, but often means immeasurable pain and suffering to many patients. Due to the limited 
understanding of the phenomena of the knee joint movement, the clinicians only have surgical solution, 
which mostly involves prosthetic replacement arthroplasty. To develop and design better prosthetic 
elements, several knee models – patellofemoral and tibiofemoral – have been already developed in order to 
investigate axial joint contact forces [25], contact points as a function of flexion [28], and the force 
distribution [16, 9, 17]. By knowing the acting forces in the tendons and ligaments connected to the knee 
joint, the development of the actual design of the prosthesis can be evaluated sooner, easier and more 
economically. The substantial difficulty during the building of a theoretical knee joint model, that the 
complexity of the joint mostly requires computational support, special programs, which does not ease the 
prosthetic design. But most of all, the greatest problem during the design, is the definition of the loads. This 
paper is an intermediate step in our research. The major aim is to develop useful methods and models for 
prosthesis design. The examined motion throughout our research is manly the squatting and additionally 
the isometric exercises. Although the squatting is considered as an everyday movement, still not that 
frequently used as the gait or the running. The reason we chose to investigate this specific movement is 
based on its relative simplicity and the fact, that during the movement the forces in the knee reach 
extremity. As an engineering rule of thumb, it is always recommended to design on the upper extremity of 
the forces. However, designing prosthesis is far from easy, thus our program is divided into segments, 
which are tightly interconnected. The research program involves the following main steps: 

A. Creation of a 2D mathematical model to investigate the forces in the connecting ligaments of the 
knee joint during squatting and isometric motion. The formulas related to the isometric motion are 
obtained by the use of the references, while the formulas related to the squatting motion are 
derived from the 2D model. These forces are considered as ‘external forces’, and experimental 
validation is required. 

B. Creation of a 3D computational model in MSC.ADAMS, to investigate the forces between the 
connecting surfaces of the femur, tibia and patella. These forces are considered as ‘internal forces’, 
and the point or area of application has to be calculated as well. 
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In this paper two novel – analytic and computational – models are presented. These models are able to 
provide estimation – based on analytic and numeric approaches – about the external and internal forces of 
the knee such as the quadriceps force (Fq), the patellar ligament force (Fpt), the patello-femoral 
compression force between the patella and femur (Fp) and the tibio-femoral force (Ft

 

) by deriving them as a 
function of knee flexion angle, mass of the person, and some ‘human-bond’ quantities [5]. The results are 
compared to the ones found in the references and to experiments as well. This study is limited to the first 
and partly the second step of our research program. 

2 METHODS 

2.1 Mathematical model of squatting 

The following simplifications were considered related to the analytical model: 

• The model is quasi-static, 
• Two-dimensional, 
• The inertial forces during the movement are neglected, 
• No internal forces between the surfaces are considered, 
• Only the squatting movement can be investigated with the model, 
• The load is derived from the mass of the person. 

 

Our model consisted of equilibrium equations which describe the condition of the forces connected to the 
femur, tibia and patella. Let us introduce the analytical model in two positions – stand and squat – and 
investigate the motion. It is seen that the patella rotates about a B point and so does the tibia (see Fig. 1).  

 
Fig. 1: Theoretical lengths of the knee joint 

The model is represented at an arbitrary angle α, and the G force is derived from the mass. The line of 
action of G intersects with the theoretical line of femur and tibia. The G force was chosen to be 785 N, 
which equals to a person with 80 kg of mass but it can be arbitrarily varied. Let us fix the y component of 
the coordinate system to this line of action, while the origin is at the ground. 
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Rigid bodies will represent the femur (3), the patella (2), and the foot with the tibia (1) as well. The three 
rigid bodies are attached to the ground by a hinge of one degree of freedom (point A), and a roller at the 
intersection of the line of action and the femur (point D). At point A, the ground reaction force is represented 
as F0 force, which equals to G. The rigid bodies are attached to each other by strings (the elastic elongation 
is neglected). The calculation is presented as a function of α, and illustrated in three different positions (Fig. 
2). 

 
 

Fig. 2: 2D analytical model in three positions 

The denotation of the geometric lengths in standing position: 

• l10
• l

: the theoretical length of the tibia, 
30

• l
: the theoretical length of the femur, 

p
• l

: the theoretical length of the patellar tendon, 
t

• l
: the perpendicular theoretical length between the axis of tibia and the surface of the patella, 

f

 

: the theoretical length between the axis of femur and the line of action of the resultant quadriceps 
force, 

In squatting position: 

• l1

• l

(α): the theoretical intersected length of the axis of tibia and the instantaneous line of action of the 
mass. Measured from the knee joint, 
3

• α: the angle between the tibia and the femur, 

(α): the theoretical intersected length of the axis of femur and the instantaneous line of action of 
the mass. Measured from the knee joint, 

• β(α): the angle between the axis of tibia and the patellar tendon, 
• γ(α): the angle between the axis of tibia and the line of action of the mass, 
• δ(α): the angle between the axis of femur and the line of action of the mass, δ = α- γ, 
• φ(α): the angle between the axis of tibia and the resultant force of the upper condyles, 
• ψ(α): the angle between the resultant quadriceps force vector and the axis of femur. 

 

The three elements are plotted as free-body diagrams, where the forces, angles, and the different lengths 
are shown on Figure 3a-d. 
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Fig. 3: The construction of the force vectors in an arbitrary position 

Where the forces are:  

• Fq
• F

(α): quadriceps force, 
p

• F
(α): patellofemoral compression force, 

pt
• F

(α): patellar ligament force, 
t

The calculation is carried out by the use of the equilibrium equations as a function of angle α. 
(α): tibial compression force. 

The moment equation applied about the z axis through point B on the 1st

 

 element (see Fig. 3a): 

)(sin)()(cos)(sin0 11 αγααβαβ ⋅⋅+⋅⋅−⋅⋅−==∑ GlFlFlM pttptpzB  (1) 

Thus the patellar force can be derived as: 

 
)(cos)(sin

)(sin)()( 1

αβαβ
αγαα

⋅+⋅
⋅

⋅=
tp

pt ll
lGF  (2) 

In order to simplify and generalize the results let us to introduce dimensionless geometric quantities and 
forces, thus the acting force will be calculated in a normalized form with respect to the force derived from 
the body mass (G). 

• λ1 ( ) 101 / ll α(α)= : dimensionless, intersected tibia length function, 

• λ3 ( ) 303 / ll α(α)= : dimensionless, intersected femur length function, 

• λp 10/ ll p= : dimensionless length of patellar tendon, 

• λ t 10/ llt= : dimensionless thickness of shin, 

• λ f 30/ ll f= : dimensionless thickness of thigh. 
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By the introduction of these quantities, the acting force in the patellar ligament is: 

 
)(cos)(sin

)(sin)()( 1

αβλαβλ
αγαλα
⋅+⋅

⋅
=

tp

pt

G
F

 (3) 

The scalar equilibrium equations related to the 1st

 

 element in the ξ - η coordinate system (see Fig. 3a):  

)(cos)(cos)(cos0 αγαβαϕη ⋅+⋅+⋅−==∑ GFFF ptti  (4) 

 )(sin)(sin)(sin0 αγαβαϕξ ⋅+⋅−⋅==∑ GFFF ptti  (5) 

By some simplification the angle between the axis of tibia and the resultant force of the upper condyles can 
be derived from Eq. (4) and Eq. (5) as:  
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By the use of angle φ the acting normal force in the tibia can be derived from Eq. (4) or Eq. (5) as well: 
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G
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The moment equation applied about the z axis through point B on the 3rd

 

 element (see Fig. 3c): 

)(sin)()(sin)(cos0 3303 αδααψαψ ⋅⋅−⋅⋅+⋅⋅==∑ GlFlFlM qqfib  (8) 

Taking into account that δ = α- γ, and assuming ψ = 0, the quadriceps force in the tendon:  

 
( )
f

q

G
F

λ
αγααλα )(sin)()( 3 −⋅

=  (9) 

The ψ = 0 assumption means that the direction of the resultant, acting forces in the quadriceps muscle are 
parallel with the axis of femur, since the muscle is connected to under the hip bone and stretches out until 
the frontal surface (facies patellaris) [26], thus this approximation is acceptable. The scalar equilibrium 
equations related to the 2nd

 

 element in the x - y coordinate system (see Fig. 3b): 

( ) pxtqix FFFF ++⋅+⋅==∑ )()(sin)()(sin)(0 αβαγααδα  (10) 

 ( ) pytqiy FFFF ++⋅−⋅==∑ )()(cos)()(cos)(0 αβαγααδα  (11) 

Out of Eq. (10) and Eq. (11) equations the magnitude of the patellar compression force can be derived by 
the use of x,y coordinates with respect to the body mass force: 

 
G
FFFF

G
FF

G
F tqtqpypxp ))()()(cos()()(2)()()( 2222 αγαδαβααααα ++⋅⋅⋅−+

=
+

=  (12) 

Since all the forces are mathematically described, by the use of λ1 (α), λ3 (α), λb, λ t, λ f

 

, β(α), γ(α), δ(α), φ(α) 
dimensionless functions and constants [5] with – their standard deviation – the formulas of the forces are 
complete and usable to estimate the forces in the knee joint during squatting.  

2.2 Mathematical model of isometric motions 
 

Several authors investigated the ratio of patellofemoral forces under isometric extension and flexion 
exercises in the relevant literature [15, 17, 7, 1, 8] with very similar results. In case of isometric motion 
investigation, it is always emphasized that generally the applied loads are relatively small (e.g. approx. 50 N 
[27] or 2.2 Nm derived from 0.5 kg of weight [17]) and correlations between the forces are always described 
as a ratio (Fpt/Fq, Fp/Fq

This approach only shows the ratio, but does not describe the forces individually. In order to gain more 
information about the forces, the quadriceps force has to be determined as well. The function of the 
quadriceps force is mostly investigated experimentally [22] or semi-experimentally by using theoretical 

) in the function of flexion angle α.   
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assumptions and experimental methods to investigate the internal forces [30]. In the experimental work 
they took into account ‘human-bond’ quantities such as muscle force-length factor as a function of knee and 
hip flexion angle, and physiological cross sectional area of the muscle. These quantities are not easy to be 
measured. 

The most known analytical descriptions among all are originated to Van Eijden’s and Yamaguchi’s models 
[27, 29], where the authors constructed a 2D model, acting in the sagittal plane. The elements were 
considered as rigid bodies and during the movement the femur was fixed while the tibia was rolling-sliding 
on the condyle of the femur. Model operates the following way: an Fq force is exerted by the quadriceps 
which is balanced by the Fpt patellar ligament force and the Fp

The ratio of the patellofemoral forces determined by various authors are summarized and shown in Figure 4 
and 5. 

 patellar compression force during the 
motion. Gravitational forces are not taken into account in this kind of investigation. 

Fpt/Fq function under isometric motion
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Fig. 4 and 5: Fpt/Fq and Fp/Fq relationship by Van Eijden et al. 

As it is seen, the results of the authors are in good agreement and in addition, Van Eijden’s model includes 
the error as well. Since the experimental and numerical results obtained by the other authors are mostly in 
the range of the error, it is adequate to use further on Van Eijden’s mathematical model.  

The cubic approximate functions of Van Eijden’s model with standard deviation and 1.1% error of fitting are: 

 
qpt FF

q

pt SD
F
F

/
32436 1024.11020944.2104934.1101383.1)( ±+⋅⋅−⋅⋅−⋅⋅= −−− αααα  (13) 
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q

p SD
F
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/
32437 486.0102417.13101516.1103508.3)( ±+⋅⋅+⋅⋅−⋅⋅= −−− αααα  (14) 

Where 
qp FtFSD / = 0.1 and 

qp FFSD / = 0.11. 

The Fp/Fq (α) and Fpt/Fq (α) functions depend on the angle of flexion, but the patellar compression force 
and the patellar ligament force cannot be directly calculated since the Fq

The F

 force is not given either. 

q force always appears as a known, externally applied force, and so far, no analytic function was 
published about its calculation. In section 2.1, Eq. (9) gives an analytic solution to Fq(α) which function only 
depends on the angle α. With this unique approach the other patellofemoral forces can be calculated as 
well, by simply multiplying Fp/Fq(α) and Fpt/Fq(α) functions with Fq(α)function, thus obtaining Fpt(α) and 
Fp(α)  individually. Let us define Fpt(α) and Fp

 

(α) functions as: 

)()()( / ααα
qqpt FqFF

q

pt
pt SDFSD

F
F

F ±⋅±=  (15) 

 )()()( / ααα
qqp FqFF

q

p
p SDFSD

F
F

F ±⋅±=  (16) 

By simply multiplying the two functions the demanded forces can be obtained. Nevertheless, the two 
functions have different standard deviation (SD) which has to be unified and calculated.  

The standard deviation of Fq(α) depends on the λ3 

  

(α) function, which can be taken from the references [5]: 

 )(86.00022.0)( 33 αααλ λSD±+⋅−=  (17) 
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Where, 

 057.0104.51057.1)( 426
33 +⋅⋅+⋅⋅=⋅= −− αααλλ stSD  (18) 

is standard deviation function of λ3 

Substituting Eq. (17) and Eq. (18) into Eq. (9), the standard deviation of F

(α), and t = 1.96 according to the 95% confidence. 

q

 

(α) force function is obtained as 
follows: 

1692.71298.40047.0)( 2 −⋅+⋅−= ααα
qFSD  (19) 

Since the functions are available, the standard deviation must be also determined for Fpt(α) and Fp(α). To 
determine the global standard deviation for these functions, let us consider an f(x) function with e.g. three 
parameters as p1, p2, p3. Each parameter has a measured standard deviation denoted as SDp1, SDp2, and 
SDp3

 

. The global deviation of the function can be derived from the principle of error propagation [11, 24] as 
follows: 
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Expanding the principle to the case of multiple functions with one variable, let us consider the force 
functions in Eq. (15) and Eq. (16): 
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By undertaking the partial differentiation and the multiplication, then simplifying the equations the following 
results are obtained related to the standard deviation: 
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Thus the global standard deviations of the functions are also obtained. The results are general with valid 
deviation and suitable to calculate directly the forces as a function of flexion angle α. 

 

2.3 Computational squatting model 

2.3.1 Knee joint geometry 

The model was built in the MSC.ADAMS program system (see Fig. 6 and 7). The bones, such as the tibia, 
patella and femur were assumed as rigid bodies, since the influence of deformation in this study is 
irrelevant. The geometry of the femur and tibia is based on a prosthesis prototype, which is under tests and 
developments.  
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Fig. 6 and 7: MSC.ADAMS knee model in two positions 

2.3.2 Ligaments, muscles 

Only the patellar ligament and the quadriceps muscle were considered in the computational model. The 
quadriceps muscle and the patellar ligament were modelled as simple linear springs. The stiffness 
coefficient was set to 130 N/mm and the damping coefficient to 0.15 Ns/mm in case of both springs. That 
corresponds with the measured values in the literature [12, 18].   

 

2.3.3 Loads, constraints and boundary conditions 

The same load (G = 785 N) was applied in case of the computational model as it was in the analytical 
model (see Fig. 6). The point of application was the femur distalis. The femur distalis was constrained by a 
GENERAL POINT MOTION, where all the coordinates can be prescribed. Only one prescription was set: 
the endpoint of the femur (distalis) can only perform translational motion along the y axis.  

The ankle part of the model was constrained by a SPHERICAL JOINT, which allows rotation about all axes, 
but all the translational motions equal to zero in that point. By applying this constraint, the tibia can perform 
a natural rotation, and later on, it can be kinematically analyzed. 

Between the femur, tibia and patella, CONTACT constraints were set according to Coulomb’s law with 
respect to the very low friction (μs = 0.0003 μd

 

 = 0.0001) in case of real joints [19, 21]. The relationship 
between the internal (contact forces) and external forces was not analyzed in this study. 

2.3.4 Solver, simulation, post-procession 
 

The MSC.ADAMS creates and solves simultaneously linear or non-linear Ordinary Differential Equations 
(ODE) and non-linear Differential-Algebraic Equations (DAE). The DAE is distinct from ODE since it 
involves an unknown function with its derivatives. Briefly the solution of any DAE is the following: firstly, a 
consistent initial value must be found, and secondly the trajectory of the DAE must be computed.  

The simulation time was set to 0.045 sec in 200 time steps. GSTIFF [6] integrator was used for integrating 
the ODE and DAE of the motion. The solver routine was set to work maximum 1e-003 tolerance of error, 
while the maximum order of the polynomial was defined to 12. The solution converged very quickly with 
these parameters. 

The post-procession was carried out in the ADAMS and partly in the Excel [13]. The ADAMS could 
compute the directly the forces, velocities and accelerations, but not the rotations. The flexion angle was 
derived by integrating the angular velocities of the femur and tibia about the x axis, taking into account that 
the model was in an initial 15 degree of squat in the beginning of the motion. In order to deal with the fact 
that the motion is three-dimensional the angles are decomposed to three separate angles. These angles 
are Euler angles, thus an order was chosen (313) to define them during the calculation. After integrating the 
appropriate angular velocities the results were summarized in charts by using the Excel program.  
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3 RESULTS AND DISCUSSION 

In Fig. 8-9-10-11-12-13 the relationship between the angle of flexion and the calculated forces are 
expressed in case of squatting motion as a function of flexion angle. 

Patellofemoral forces under squatting motion 
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Fig. 8 and 9: Patellofemoral forces and the quadriceps force under squatting motion 

Fpt/G - Patellar ligament force under squatting motion
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Fig. 10 and 11: Patellar ligament and Patellofemoral force under squatting motion 

Ft/G - Tibiofemoral compression force under squatting motion
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Fig. 12 and 13: Tibiofemoral and Tibial compression force under squatting motion 

In Figure 8, all the four patellofemoral forces are summarized in one diagram, where the patellar-ligament, 
patellofemoral compression and the tibiofemoral compression forces have rapidly growing tendency as a 
function of flexion angle, while the quadriceps force reaches its peak value approximately at 120 degree 
(see in Fig. 9). The quadriceps force has a good accordance with another author’s result [22], who used 
reversed dynamics approach based on in vivo measurement of knee kinematics. Beside Sharma’s result, 
experiments were carried out at the Ghent University with an Oxford type test rig. The test rig is capable to 
measure the quadriceps force, and the ankle forces. The experimental test provided fairly good result until 
80 degree of flexion (see in Fig. 9), above that, at the maximum value of the function; the force is over-
predicted approximately with the factor of two, similarly to other authors’ results who used Oxford type test 
rig. This over-prediction is originated to the Oxford type test rig method [14], and considered average 
compared other authors [2, 23, 20]. The explanation of the over-prediction is the following: during the 
dissection of the cadaver knee, the quadriceps muscles are detached from the femur, and the knee capsule 
is either opened or completely removed. That results that the complete body weight (G) is carried by only 
the quadriceps and the patellar ligament, thus the estimated – or measured – loads appear higher than the 
physiological.  

Other authors [30] have achieved closely same result with combined (experimental work and theoretical 
assumptions) methods, although the peak value of the quadriceps force and the tibiofemoral force were 
both estimated approximately at 90 degree of flexion angle, which corresponds fairly well, if the results 
were obtained by Oxford type test rig [2, 23, 20]. In case the results are obtained by carrying out 
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measurements and calculations on human subjects, the peak of the forces (patellofemoral, tibiofemoral 
forces, including the quadriceps force as well) is shifted positively approximately 30 degree of flexion angle, 
thus the peak of the forces are approximately between 120-130 degree of flexion angle [22, 10, 3].  

In this study a three-dimensional computational model was created and simulated as well, and the results 
were plotted in Figure 9-10-11-12. In case of the patellofemoral compression force, the analytical and 
numerical results are compared to the experimental results from the related literature [4] in Figure 11. The 
analytical model over-predicts the experimental with a factor of one until 60 degree, and a factor of more 
than two beyond 80 degree of flexion angle. The numeric approach gives better approximation about the 
patellofemoral force since the ADAMS model has similar characteristic, and 0.4 factor of average difference 
compared to the results of Escamilla et al., while the analytical model does not break off between 90 and 
120 degree of flexion angle, where the estimated peak point is located.  

The tibiofemoral force cannot be calculated by the analytical model, thus only the ADAMS model was 
compared to the related references (see Fig. 10). The numeric result is in good agreement with other 
author’s result [30], although there was no more comparable date to match above 90 degree of flexion. 

Comparable literature for the tibial compression force and patellar ligament force were not found, and only 
the analytic patellar ligament force could be compared to the numerical results (see Fig. 10). It is clearly 
seen, that the characteristic of the forces are parabolic and their values are converging to infinite, thus they 
could be valid only at lower angles. 

In Figure 14-15-16 the forces in case of isometric motion are plotted against the flexion angle. 

Fpt/G, Fp/G and Fq/G  functions under isometric motion
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Fig. 14 and 15: Patellofemoral and Patellar ligament force under isometric motion 
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Fig. 16: Patellofemoral compression force under isometric motion 

As it is seen, the forces are substantially smaller under isometric motion than during squatting. By the use 
of the Fq

 

(α) force function, the patellofemoral force alongside with the patellar ligament forces can be 
calculated and plotted with their margin of error as well.  

4 CONCLUSION 

In summary, two new models were presented in this paper, an analytic and a numeric, which are capable to 
predict – with their standard deviation – the patellofemoral and tibiofemoral forces in the knee during 
squatting motion. The analytic model is based on theoretical assumptions and experimentally determined 
parameters based on multiple human participants, while the numeric, or so called ADAMS model, is built 
from an existing prosthesis, which is in prototype phase. 

The results of the analytical model – especially the quadriceps force – showed good accordance with the 
compared experimental and analytical results taken from the references. 
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The obtained Fq

As a further step, the analytic model will be complemented with other flexion angle dependent parameters 
in order to decrease the deviation between the experiemental result and the analytic, while the in case of 
the ADAMS model, the internal forces such as the friction and normal force between the connecting 
surfaces will be investigated as a function of flexion angle. 

(α) force function is extended for further use as an input function for isometric motion, since 
all the descriptive relationships found in the references provide a ratio of the patellofemoral forces divided 
by the quadriceps force, thus the single components are not possible to derive. 
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