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Abstract  Ductile tearing plays a major role in the failure behaviour of flawed pipeline girth welds under 
plastic deformation. Different approaches exist to describe tearing in finite element analysis, each of which 
has specific advantages and disadvantages. This paper focuses on the highly pragmatic mapping 
approach, which interpolates between results of simulations with different but fixed flaw depths. The main 
advantage of mapping is its straightforward connection with experimentally determined crack growth 
resistance curves, by application of the tangency approach. Since mapping is unique in that it does not 
incorporate ductile tearing within a single simulation, its physical relevance may be questioned. This paper 
addresses a justification of the mapping approach from a fundamental point of view. First, an analytical 
proof of the concept is given based upon the mathematical background of the J integral. Then, a numerical 
validation gives confidence in the justification. Finally, attention is drawn to possible practical 
implementations of the mapping method. 
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1 INTRODUCTION 

Due to the exhaustion of fossil fuel resources, an increasing number of pipelines is installed in harsh 
environments that may impose global plastic deformations to the pipeline (permafrost, landslide prone 
terrains, …). The tensile strain capacity of such pipelines is to a great extent influenced by the structural 
response of the girth welds that connect different pipe sections. In many cases, failure is governed by the 
occurrence of (stable) ductile tearing, which promotes collapse of the remaining crack ligament. 

Many structural integrity assessments involve the use of finite element modelling. If flawed girth welds of 
plastically deformed pipelines are considered, the above indicates that the incorporation of ductile tearing is 
essential. Different methods exist to this purpose, all of which have their strengths and weaknesses. A brief 
overview is provided in Section 2. 

Following, this paper focuses on the justification (Section 3) and validation (Section 4) of one specific 
modelling approach, where ductile tearing is seen rather as a succession of simulations with different, but 
fixed, crack sizes. Finally, conclusions are drawn in Section 5. 

 

2 DUCTILE TEARING IN FINITE ELEMENT MODELLING 

Many methods have been implemented to incorporate ductile tearing in finite element analyses. This 
section briefly covers four commonly applied techniques, with an emphasis on their (dis)advantages: 
damage modelling, cohesive zone modelling, extended finite element modelling, and the mapping 
approach. 

2.1 Damage modelling: the Gurson-Tvergaard-Needleman (GTN) model 
 
Damage modelling aims to describe failure through the gradual development of damage. The most widely 
applied damage model for ductile tearing is the Gurson-Tvergaard-Needleman (GTN) model, which has its 
foundations in [1-3]. It is based on the physical process behind ductile tearing, i.e. the nucleation, growth 
and eventual coalescence of voids. These voids can be unmistakably observed with post-mortem 
macrography (Figure 1). 

An unmistakably clear advantage of the GTN model is its basis of microstructural physics, which 
significantly increases its possibilities. For example, the path of ductile tearing can be predicted, and effects 
of constraint [4] and residual stresses [5] can be directly taken into account. However, the GTN model also 
involves some disadvantages, notably: 



− A total of eight parameters is required, which hampers its practical applicability. In particular, it may 
be challenging to relate the GTN model parameters to an experimental crack growth resistance 
curve. 

− The result is highly mesh dependent. Apart from this, a very fine mesh is needed which drastically 
increases computational time. 

 

 

Figure 1: Ductile tearing results from the nucleation, growth and eventual coalescence of voids. 

 

2.2 Cohesive zone modelling 
 
Cohesive zone modelling assumes a pre-defined crack propagation zone (‘process zone’) ahead of the 
crack tip, in which zero-thickness cohesive elements are added as an interface between continuum 
elements. These cohesive elements are characterized by a ‘separation law’, which correlates the tensile 
stress with a certain separation. Throughout time, many linear and non-linear separation laws have been 
developed, each with a different set of characteristic parameters [6]. 

The application of cohesive zone modelling is attractive as its algorithm is fairly straightforward and intuitive 
from an engineering point of view. Nevertheless, some objections can be made: 

− It is challenging to estimate the separation law parameters that comply with experimentally 
measured fracture behaviour. To obtain a good representation of reality, inverse modelling is 
required [6]. As such, much of the intuitiveness is lost. 

− In the most straightforward application of cohesive modelling, a crack path is prescribed and 
cohesive elements are added in this prescribed path only. As a consequence, crack path 
predictions become impossible. To overcome this anomaly, cohesive elements can be added at the 
interfaces of all elements in a volume rather than a surface. However, this involves other issues 
such as the requirement of a very fine and computationally intensive mesh [7]. 

2.3 Extended finite element modelling (X-FEM) 
 
The extended finite element modelling (X-FEM) method, first reported in 1999 by Belytschko and Black [8], 
addresses the limitation of other methods such as cohesive zone modelling, that crack propagation should 
follow element edges (2D) or surfaces (3D). In X-FEM, the crack is allowed to intersect edges of elements, 
whose nodes are enriched with Heaviside degrees of freedom to allow for discontinuous displacement 
jumps. 

Major advantages of the X-FEM approach are that mesh dependency is strongly reduced, and that crack 
propagation need not follow a pre-described path. As a consequence, it can be used to predict crack 
propagation direction in a continuous way. 
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The major limitation of X-FEM, however, is that its implementation is up to now either based upon linear-
elastic fracture mechanics [9] or on cohesive separation laws [10]. Whereas an application of the former is 
mostly restricted to fatigue crack propagation, the latter has objections similar to those of cohesive zone 
modelling (requirement of inverse modelling). 

2.4 The mapping approach 
 
The mapping approach is a simple, pragmatic alternative to the abovementioned approaches which all 
incorporate ductile tearing within the simulation itself. Mapping simply interpolates between results of 
simulations with fixed but different crack sizes. Figure 2 illustrates this approach for deformation-controlled 
loading, assuming J as a crack driving force measure. J is calculated as a function of the applied 
deformation u (a). By plotting all results over the tearing resistance (‘J-R’) curve of the material under the 
occurring constraint conditions, and connecting points of equal deformation ui

 

 (b), crack growth can be 
estimated as a function of u and failure can be identified as the point where the curves of applied J and 
resistance tangentially touch at one point (tangency approach). 

 

Figure 2: Application of the mapping approach (a) according to the tangency criterion (b). 

 

The mapping approach is highly pragmatic as it directly uses an experimentally measured crack growth 
resistance curve. As such, no model parameters have to be tuned by inverse modelling.  

On the other hand, the mapping approach involves some challenges: 

− In contrast with the GTN damage model, effects of constraint are not explicitly described and 
should be incorporated by the input of a representative J-R curve. 

− The direction of crack propagation is not predicted during the simulation itself and, therefore, 
requires a user-defined criterion.  

The mapping approach has been widely applied in the field of strain-based design of flawed girth welds 
because of its high pragmatism. For instance, the recently developed strain capacity equations of Kibey et 
al. [11] rely on the technique of mapping.  

Given its importance and common application, the remainder of this paper is fully devoted to the mapping 
approach. In particular, since the mapping approach does not model ductile tearing within a simulation 
itself, attention is given to a proper justification of its applicability.  
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3 ANALYTICAL JUSTIFICATION OF THE MAPPING APPROACH 

For the following, focus is put on analyses where J is used to express driving force. As a first step towards 
the answer, a distinction has to be made between two different methods to calculate J. The following is 
taken from [12] and uses symbols that are commonly applied for small-scale fracture mechanics specimens 
(SENB, SENT): B is the specimen width, W the specimen thickness, a the crack depth and b = W – a the 
crack ligament. Additionally, BN

A first method (‘deformation’ J) starts from the energy release rate definition of J which – in absence of 
crack growth – can be transformed to the following relation for the plastic component J

 is the net specimen width, which is smaller than B if side grooves are 
present. 
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where η is a tabulated proportionality factor (-) which is assumed to depend only on the relative crack 
ligament, b/W. Note that, in contrast with this assumption, η-factors have been observed to additionally 
depend on strain hardening behaviour [14]. Further, Upl (N.mm) is the energy that follows from integration 
of the load – plastic displacement (P-upl

 

) curve: 
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A second method (‘far-field’ J) uses Rice’s [15] path-independent contour integral definition of J as defined 
by: 
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where ds is a small increment along the contour Γ, taken around the crack tip as in Figure 3, x the 
orientation of the crack in a x-y coordinate system, nj

 

 the components of the normal to this contour, and w 
the strain energy density: 
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Figure 3: Contour integral for calculation of far-field J. 

 

 

In Eqs. (3) and (4), ε ij (-) and σ ij

Deformation J and far-field J calculations yield identical results in absence of crack growth. If ductile tearing 
occurs, however, a plastic wake is formed which will influence far-field J but not deformation J. Indeed, 
deformation J (Eq. (1)) is based upon deformation plasticity which assumes non-linear elastic behaviour 
rather than plastic behaviour. This assumption eliminates any strain history dependence, and a concrete 
consequence hereof is that deformation plasticity does not predict a plastic wake. On the other hand, the 
far-field J contour integral (Eq. (3)) is readily influenced by the stress-strain distribution near the crack tip. 

 (MPa) are the tensor components of strain and stress, respectively, in the 
x-y coordinate system. 
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Additionally problematic is that a plastic wake may influence the convergence of Eq. (3), as its path 
independence relies on deformation plasticity. 

Given the above, it is necessary – when using the tangency criterion – to compare similar formulations for J 
in crack driving force curves and the resistance curve. To this respect, experimentally determined J-R 
curves rely on the ‘deformation’ definition of J. In particular, the globally used ASTM E1820 standard [16] 
(SENB tests) involves the following equation to account for ductile tearing in the calculation of updated 
plastic J-values Jpl,i from the previously measured value Jpl(i–1)
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with γ a dimensionless factor that directly follows from η(b/W): 
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Note that Eq. (6) involves an approximation. Hence, accuracy may be lost when crack growth occurs (ai – 
ai-1

Recent procedures for SENT testing [14, 17] adopt relations similar to Eq. (5), but with U

 ≠ 0).  

pl

It is shown in [12, 18] that Eq. (5) relies upon Eq. (1), where it is assumed that the actual crack size a

 the plastic 
surface below the load-CMOD curve rather than the load-displacement curve. It was found that this 
modification produces η-factors which are much less sensitive to b/W and material behaviour. 

i

 

 has 
been constant during the test. Therefore, Eq. (5) indeed represents a ‘deformation’ J. Recognition of this 
fact is a justification of the mapping method. Indeed, although based on the far-field equation Eq. (3) in 
most finite element software packages, the crack driving force curves determined with the mapping method 
correspond with a deformation J as no plastic wake is modelled due to the absence of crack growth within 
each simulation. 

4 NUMERICAL VALIDATION 

To validate the similarity between experimental J-R curve determinations and the mapping approach, a 
two-dimensional (plane strain) finite element model of a clamped SENT specimen has been developed 
using ABAQUS®

 

 version 6.9 (Figure 4). The objective of this model is to compare J integral predictions 
using the CANMET procedure from [17] with differently obtained numerical J-values. Assumed dimensions 
and material properties are given in Table 1. Note that the length-to-thickness ratio of the specimen is 10 as 
advised in the CANMET procedure. It was chosen to model the crack as infinitely sharp, with an 
uncollapsed crack tip mesh. Material was modelled using a small-strain formulation with incremental 
plasticity according to the Ramberg-Osgood equation: 

 

Figure 4: Geometry and mesh of the investigated finite element model. 
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Table 1: Parameter values assumed for the validation simulation 

Parameter Symbol (dimension) Value 

Geometrical parameters 

Specimen length H (mm) 200 

Specimen thickness W (mm) 20 

Initial crack depth a0 3  (mm) 

Material parameters 

Young’s modulus E (MPa) 200 000 

0.2% proof stress σ0.2 500  (MPa) 

Strain hardening exponent n (-) 10 

 

 

Only half of the specimen has been modelled due to symmetry, using a total of 4618 eight-node 
quadrilateral elements with reduced integration. It was arbitrarily chosen to describe an applied total 
displacement u of 1.0 mm without ductile tearing, after which a crack growth of 1.0 mm occurs over an 
additional applied displacement of 0.2 mm. Two different analysis types were performed: 

− crack growth in one simulation, by releasing nodes ahead of the crack tip in ten steps. Each step, 
the applied displacement increases with 0.02 mm and the crack grows with 0.1 mm. This method is 
to some extent related to the cohesive zone modelling approach. 

− the mapping approach, with crack growth increments of 0.1 mm (ten different simulations with fixed 
crack depths 3.0 mm, 3.1 mm, …, 4.0 mm). Corresponding imposed displacements were 
respectively 1.0 mm, 1.2 mm, and so on. 

J integral has been extracted over twenty contours around the crack tip. In the following, attention is given 
to values from the 15th and the 20th

First focussing on the numerically observed J-response before ductile tearing (evidently equal for both 
investigated analysis types), there clearly is a strong agreement with J-values predicted from the CANMET 
procedure (Figure 5(a)). This gives confidence to both the numerical accuracy of the finite element model 
and the analytical accuracy of the CANMET equations. 

 contour which is sufficient to reveal the trends of interest. 

More interesting, however, is the comparison of J-values observed during ductile tearing (Figure 5(b)). 
Whereas the simulations from the mapping approach have a strong J integral convergence (values from the 
15th and 20th

 

 contour are nearly identical), the simulation where nodes are released suffers from significant 
contour divergence. This observation is related to the fact that Eq. (3) loses its path independence if 
principles of deformation plasticity are violated. Indeed, a plastic wake is clearly observed (Figure 6). Apart 
from the superior convergence properties, the simulations from the mapping approach are significantly 
more representative with respect to the prediction from the CANMET procedure. A small difference is 
observed between both, which might be appointed to the approximate character of γ (Eq. (6)) as explained 
above. 
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Figure 5: Comparison of J integral values (a) in absence of ductile tearing, and (b) with ductile tearing. 

 

 

Figure 6: A plastic wake is observed around the zone where nodes were released. 

 

5 CONCLUSIONS 

The presented study shows that, in combination with an experimentally determined J-R curve that 
represents the constraint level of the structure, the mapping approach can be validly adopted as a 
technique to model ductile tearing. This technique eliminates many of the issues that arise if tearing is 
modelled in the simulation itself, such as a strong mesh dependency, the requirement of a very fine mesh, 
and the necessity of inverse modelling.  

The justification of the mapping approach follows from the observation that both experimental J-R curves 
and modelled J integral responses rely upon a ‘deformation’ J rather than a ‘far-field’ J. The former is based 
upon deformation plasticity, which neglects the influence of strain history present in a plastic wake. The 
latter is based upon a contour integral whose result and path independence is altered by this plastic wake, 
and is therefore unsuited for modelling applications that involve ductile tearing. 

As a major challenge of the fully integrated application of the mapping approach, the necessity of a 
procedure to estimate the propagation path of ductile tearing can be put forward. This propagation path has 
been observed to be highly variable for girth weld flaws. The development and validation of such procedure 
is advised for future research. 
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