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Abstract. In this paper we present the continuum plasticity model based on non-Associated Flow Rule (non-
AFR) for Hill’s48 quadratic yield function. In case of non-AFR, Hill’s quadratic function used as plastic 
potential function, makes use of plastic strain ratios to determine the direction of effective plastic strain rate. 
In addition, the yield function uses direction dependent yield stress data. Therefore more accurate 
predictions are expected in terms of both yield stress and strain ratios at different orientations. We 
implemented a modified version of the non-associative flow rule originally developed by Stoughton [1] into 
the commercial finite element code ABAQUS by means of a user material subroutine UMAT. The main 
algorithm developed includes combined effects of isotropic and kinematic hardening [2]. This paper assumes 
proportional loading cases and therefore only isotropic hardening effect is considered. In our model the 
incremental change of plastic strain rate tensor is not equal to the incremental change of the compliance 
factor. The validity of the model is demonstrated by comparing stresses and strain ratios obtained from finite 
element simulations with experimentally determined values for deep drawing steel DC06. A critical 
comparison is made between numerical results obtained from AFR and non-AFR based models. 

1. INTRODUCTION 

Associative flow rule (AFR) as the dominant theory in metal plasticity is known to use an identical formulation 
for both the yield and the plastic potential functions. Different yield criteria have been developed which 
employ a series of parameters in their formulation based on either strain ratios or directional yield stresses or 
a combination of these two. In case of plastic deformation, the plastic strain increment is found by the plastic 
potential function which is equal to the yield stress function. Thus, using a plastic potential function to 
address zero dilatancy (i.e. zero or negligible volume change after plastic deformation), automatically implies 
using the same pressure insensitive function as yield stress function (normality condition). This is why an 
associated flow rule is not capable of modeling both zero dilatancy and pressure sensitive yield stresses. 
However, uniaxial tension and compression tests on iron based metals and aluminum, reported by Spitzig 
and Richmond [3], revealed the (linear) dependency of yield stress on hydrostatic pressure. This 
observation, together with the negligible plastic dilatancy assumption for metals, opened a discussion about 
the validity of associated plasticity. Attention has been focused on non-associated flow rules (non-AFR), thus 
describing the plastic flow  independently  from  the  yield  stress  function  in  constitutive  models  of  metals. 
This work is based on a non-AFR originally developed by Stoughton [1], which in turn is a typical version of 
a more generalized and pressure sensitive one developed by Stoughton and Yoon [4]. 

2. NUMERICAL IMPLEMENTATION 

At room temperature plastic deformation happens due to dislocation glide on given crystallographic planes 
resulting in microscopic shear deformations [5]. This motion results in an accumulation of microstructural 
obstacles, thus increasing the slip resistance (hardening) [6]. Considering only proportional loading, this 
resistance of a metal against further plastic deformation is described by an isotropic hardening function in 
which the yield surface of the metal expands radially. In metal forming applications, the renowned Swift 
isotropic hardening model is commonly used for non-saturating materials such as steels. However, in some 
cases the Swift model is unable to perfectly fit to experimental data. Therefore we suggest an isotropic 
hardening function for DC06, which is a modified version of Swift’s law (Eq. 1). This equation is able to 
accurately model the specific non-linearity observed before 0.1 amount of true plastic strain, what is not 
feasible with the ordinary Swift law (Fig. 1).  



 

The Swift hardening law is described as 
𝜎

iso= CR(ε0+ εp)n                                        ( 1) 
The proposed modification to Swift’s law is        

𝜎
iso= CR(ε0+ εp)n- CR

´(ε0
´+ εp) n´                                                                                 ( 2) 

Material properties for DC06 are described in Table 1. 

  

Figure 1. Hardening curve for DC06 at rolling direction, a) Swift law, b) modified Swift law.
  

 Table 1. Material parameters for Swift and modified Swift hardening law 
 Swift law Modified Swift law 

CR [MPa] ε0 n CR [MPa] ε0 n CR
’
 [MPa] ε0

’ n' 

551.004 0.00076 0.251 447.314 0.0014 0.8104 890.291 0.00518 0.3767 
 
 
 
To describe the orthotropic behaviour of the deep drawing steel, the classical Hill’48 continuously 
differentiable yield stress function (fy) has been used.  The yield criterion F is described by 

F= fy – 𝜎iso=(𝜎11
2+λy 𝜎22

2 -2νy 𝜎11𝜎22+ρy 𝜎12
2)1/2- 𝜎iso                                                                          ( 3) 

 where νy, λy and ρy are yield stress function parameters defined as 
    λy=( 𝜎0/ 𝜎90)2 ,  νy=(1+( 𝜎0/ 𝜎90)2 -( 𝜎0/ 𝜎b)2)  and ρy=2( 𝜎0/ 𝜎45)2-0.5( 𝜎0/ 𝜎b)2                                     ( 4)  
 
The stress components 𝜎0, 𝜎45 and 𝜎90 are respectively the yield stress at RD (rolling direction), DD (diagonal 
direction) and TD (transverse direction) obtained from uniaxial tensile tests. Based on the work of Butuc et al  
[7], the equibiaxial yield stress (𝜎b) is calculated from 𝜎b /𝜎0 =1.045.  If the exact formulation of fy is used for 
determining the direction of plastic strain rate, then the common associated flow rule is obtained. One of the 
drawbacks of using AFR based on Hill’48 (using fy in Eq. 3) could be the rough prediction of strain ratios. 
This is because the material parameters in Eq. 4 are calibrated based on direction dependent yield stresses. 
One may suggest to use a strain ratio dependent yield function to overcome the poor prediction of strain 
ratios. In this case, strain ratios would be predicted accurately due to the strain ratio based calibration 
approach. However, a poor prediction of yield stress results at different orientations can be obtained. Some 
researchers suggest an optimized approach and calibrate material parameters based on both strain ratios 
and direction dependent yield stresses resulting in a better prediction compared to previous approaches [8].  
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Figure 2. Experimental tensile test diagrams for DC06 (0.8mm thickness) at RD, DD and TD (left 
diagram). Yield stress at 0.2% plastic strain and 0.5% total strain (right diagram). 

The experimental tensile test results and yield stresses at 0.2% plastic strain and 0.5% total strain for deep 
drawing steel DC06 (sheet thickness 0.8mm) are plotted in Fig. 2. Judging from the stress-strain diagrams 
for different orientations we may conclude that DC06 possesses isotropic behaviour. But as will be shown 
later (Fig. 3), the plastic strain ratios of this material reveal an anisotropic plastic behaviour. Therefore 
describing this behaviour using Hill’48 in a framework based on AFR seems impossible. However, using a 
plastic potential function calibrated from strain ratios to control the plastic behaviour of the metal may 
improve the results of the constitutive model. This could explain that non-AFR based models may be capable 
of solving the so-called anomalous behaviour in materials with normal anisotropy less than one.  

In this case (non-AFR) the Hill’s potential function (fp) is described by 
 fp = 𝜎iso=(𝜎11

2+λp 𝜎22
2 -2νp 𝜎11𝜎22+ρp 𝜎12

2)1/2                                                                                  ( 5) 
where νp, λp and ρp are plastic potential function parameters     
     λp= r0(1+ r90)/( r90(1+ r0)) ,  νy= r0/(1+ r0)  and                                                                                 ( 6) 
     ρy= (r90+ r0)(1+2 r45)/(2 r90 (1+ r0))    

The plastic strain increment is obtained by: 
dεp=dλ n                                                                                                                                         ( 7) 

where n is the first derivative of the plastic potential function  
    n=𝜕fp/ 𝜕𝜎                                                                                                                                          ( 8) 
and dλ is the plastic compliance factor that determines the magnitude of effective plastic strain increment.  

The amount of plastic work calculated from the yield function is equal to that calculated based on Cauchy 
stress. This is called the principle of plastic work equivalence, and is described by 

fy dεp=𝜎 dεp                                                                                                                                                                                                            ( 9) 
where εp is effective plastic strain. 
Applying Euler’s theorem for a first order homogenous function, here the plastic potential function, results in 

𝜎 (𝜕 fp/ 𝜕𝜎)= fp                                                                                                                                                                                                    (10) 

Substituting Eq. 7 in Eq. 9 and then applying Euler’s theorem Eq. 10 gives 
dεp= 𝜎 dεp/ fy= dλ(𝜎 (𝜕 fp/ 𝜕𝜎))/ fy= dλ fp/ fy                                                                                     (11) 

This equation relates the increment of equivalent plastic strain to the plastic compliance factor. Implementing 
this equation into an implicit stress update algorithm results in very laborious calculations especially when 
kinematic hardening effects are involved. For this reason some researchers assume equality of equivalent 
plastic strain increment and compliance factor [9,10]. Similar to Cvitanic et al [11] we take the non-simplified 
approach as described by Eq.11 into account for the integration algorithm. Another crucial constraint in both 
AFR and non-AFR is the consistency condition which keeps the stress state of the metal on the yield surface 
in case of plastic deformation: 

md𝜎=H dεp                                                                                                                                      (12) 
where H is the derivative of the isotropic hardening function with respect to effective plastic strain. 



 

Commercial finite element codes are displacement driven and the stress tensor is found by discretising the 
strain tensor into elastic and plastic strain tensors [12]. 
 d𝜎 =Ce(dε- dεp)                                                                                                                               (13) 
 
 
Determining plastic and elastic strain tensors can be done by different integration algorithms from which the 
fully implicit one gained most attention due to its unconditional stability which is lacking in an explicit 
approach. In the stress update algorithm based on implicit integration, the trial stress function (Eq. 14) 
updates the stress tensor outside the yield surface. In the next step the stress tensor is brought back to the 
yield stress by means of a plastic corrector.   

𝜎
tr=𝜎n+ ∆ε Ce                                          (14) 

where 𝜎tr and 𝜎n are trial stress and stress at the last converged step, respectively. 
This procedure is performed by solving a series of non-linear equations by means of Newton-Raphson 
iterations to iteratively bring back the stress state onto the yield surface at the current time step. This method 
requires defining a series of residual functions for plastic strain, Cauchy stress and yield function as 
described in Eq. 15, 16 and 17. 

r𝜎=𝜎- 𝜎n- Ce(dε- dλ n)                                                                                                                          (15) 
rp=∆εp fy-∆λ fp                                                                                                                                                                                                              (16) 
rF= fy- 𝜎iso [εp

n+dεp]                                                                                                                              (17) 
Using Taylor’s truncated series for Eq.15-17, after extensive manipulations we reach to 

dΔ𝜎 = -ϴ-1 r𝜎 - ϴ -1- dΔλ  Ce n,  where (ϴ= I + Δ λ Ce (𝜕fp/ 𝜕𝜎))                                                          (18) 
dΔεp=( dfy Δ λ+ dΔεp fp+ rF Δεp- rp)/( fy+ Δεp H)                                                                                    (19) 

where dΔ denotes to incremental change in the constitutive variable. In Eqs. 18 and 19 dΔλ is described as 
dΔλ= (rF-B1ϴ-1 r𝜎+H rp/fy)/(Hfp/fy+ ϴ -1Ce n)                                                                       (20) 

Using the developed implicit material subroutine each increment starts with checking the yield condition 
(Eq.3) in which the trial stress is employed from Eq. (14). If the requirement of plastic flow is fulfilled then 
residual functions for stress, yield function and effective plastic strain are obtained from Eqs. 15-17, 
respectively. Subsequently the iterative change of compliance factor (dΔλ) can be calculated by Eq. 20. 
Finally the iterative change in Cauchy stress tensor is obtained by updating the incremental change of 
effective plastic strain Eq. 19 and substituting it into Eq. 18.     
 
3.    CONCLUSIONS 
 
The implemented non-AFR material model is evaluated by comparing experimental tensile data for DC06 at 
different material orientations and simulations based on single element uniaxial tension loading. Using an 
AFR model based on Hill’48 (but using fp instead of fy in Eq.3), indeed results in a good agreement in terms 
of directional strain ratios (Lankford) as seen in Fig. 3a. However poor results are obtained for directional 
yield stresses. On the other hand, using the stress based yield function (Eq.3) can ensure accurate 
prediction of directional yield stresses. In case of the DC06, directional yield stresses (Fig. 2) may represent 
an almost isotropic behavior. However the strain ratios reveal indispensable anisotropic behaviour. Therefore 
using the yield stress to describe the anisotropic plastic behaviour of material may result in a severe 
discrepancy between experimental and simulation results. Similar discrepancy is observed for A12090-T3 in 
work of Cvitanic et al [11]. This issue can be solved by using plastic potential function and yield stress to 
control the flow and yield of material, respectively. Both directional Lankford coefficients and yield stresses 
are in good agreement with experimental results. Therefore using non-AFR for case of classical Hill’s 
anisotropic behavior improves the simulation results.    



 

 

Figure 3. Comparison of simulated and experimental results at different orientations  

 a) Lankford coefficients, b) yield stresses  
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