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Abstract  This paper studies the contact mechanics in a line contact during fretting fatigue conditions. In 
literature one can find numerical and analytical solutions of normal and tangential stresses for a variety of 
loading cases. However, a unified solution valid for all loading cases during fretting fatigue conditions is not 
available. We present in this paper a strategy to combine existing contact mechanics theories into a unified 
calculation procedure. Therefore, the relevant contact mechanics theories for an idealized cylinder-on-flat 
contact are selected and bundled. Two clear flowcharts group the existing theories, which results in a 
unified strategy that can easily be implemented in a programming language. A Matlab script was 
programmed and calculates the normal and tangential stress distribution based on the applied forces, the 
geometry of the contact, the coefficient of friction and the material properties. The present theory can be 
used to automate the calculation of the stress distributions, or as validation of new numerical techniques. 
The script is modular and can be extended to calculate the lifetime of a component, by adding lifetime 
criteria. 
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1 INTRODUCTION  

Fretting fatigue is a combination of the tribological fretting phenomenon and the failure mechanism fatigue. 
A schematic overview of fretting fatigue is given in Figure 1, where a specimen and a pad are in contact 
with each other. The specimen is dynamically loaded with a fatigue force Ffat that governs the fatigue 
mechanism. The fretting phenomenon is induced by the pad that is normally stressed (FN) onto the 
specimen and is tangentially loaded with a dynamic load Q, leading to relative displacements in the order of 
a few micrometer.  

  

Figure 1. Overview of interacting forces FN ,Q & Ffat on fretting fatigue contact between pad and specimen. 

 

An example of practical applications are joints, which are by design and purpose sensitive to fretting 
fatigue. Connections consist always out of two or more parts that are in contact with each other. Together 
they sustain a (dynamic) load or are subjected to neighbouring vibrations. It is clear that hereby the 
conditions are satisfied to obtain fretting fatigue. Joining techniques where fretting fatigue has been 
encountered are lap-joints [1], dovetail connections [2, 3] and shrink connections [4], see Figure 2.  

   

Figure 2. Overview of some applications where fretting fatigue has been reported. 

 

Compared to plane fatigue conditions, lifetime will be reduced due to fretting fatigue conditions. This is 
attributed to the stress state that is introduced by the combination of fretting and fatigue loading. The extra 
stresses due to fretting are concentrated in the contact area and the vicinity of the contact. Not surprisingly, 
in this area cracks first initiate, then propagate and finally failure takes place. 
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To study the influence of the combined fretting and fatigue loading on the lifetime, one should first know the 
stress state in and nearby the contact area. In literature we find several analytical and numerical techniques 
to calculate stress states, however a comprehensive approach valid for all loading combinations is 
unknown to the authors. This paper gives an overview of some analytical formulas available in literature to 
calculate (normal and tangential) stress distributions, and combines them in a unified procedure. 

2 CONTACT MECHANICS IN FRETTING FATIGUE CONTACTS 

Interaction between two specimens raises stresses in the contact area and the vicinity of the contact area. 
The interacting forces (FN, Q, FFAT) introduce a normal stress distribution p(x) and a tangential stress 
distribution q(x) between the specimens. The purpose of this paper, and developed Matlab script, is to 
calculate p(x) and q(x) analytically in function of all possible combinations of the normal force FN, the 
tangential force Q and the fatigue force  FFAT. 

The geometry examined in this model is an idealized cylinder-on-flat contact, which is simplified to a 2D 
plane strain model. This contact type is chosen because it is most frequently used in fretting fatigue 
research, both numerical and experimental. For example, in finite element simulations this simple geometry 
is used as a reference to validate the developed numerical models. Cylinder-on-flat contacts are frequently 
used for coupon scale fretting fatigue experiments. This because the specimens are simple and a 
reasonable repeatability and controllability of the experiment is realized.   

A second boundary condition of the presented model is that both components (specimen and pad) should 
have the same mechanical properties: Young modulus E, and Poisson coefficient ν. This implies that the 
Dunders’ parameter β [5] becomes zero and there is a decoupling between the normal stress distribution 
p(x) and the tangential stress distribution q(x). A decoupling ensures that the tangential stress distribution 
q(x) does not affect the normal stress distribution p(x), and vice versa. Therefore, in this paper the 
calculation for both stress distributions, p(x) and q(x), is tackled in different sub-sections.  

2.1 Normal stress distribution (Hertz) 

When a flat and cylindrical surface are loaded by a normal force FN (Figure 1, Q=0,Ffat=0), the normal 
stress distribution is given by Hertz’ well-known contact theory. Hertz’ theory is based on the assumption 
that both contacting specimens behave as half planes in the vicinity of the contact area, i.e. non-conformal 
contact. Practically we assume that a contact is non-conformal when a/R<0,3 [6], with a the half contact 
width and R the radius of the cylindrical surface.  

A second assumption requires that the contact is incomplete, which means that the contact area cannot be 
fixed geometrically, for example, dependent on the normal force FN as is the case in Figure 1. 

For cylinder-on-flat contacts in fretting fatigue experiments are the boundary conditions for Hertz’ theory 
mostly satisfied. The Hertz’ normal pressure distribution p(x) is then given by a parabola: Figure 3, formula1 
[7]. The width of the parabola is 2a, where a is given by (2, the maximum normal stress pmax is given by 
formula 3. 

 

Figure 3. Normal pressure distribution (Hertz) in a line contact. 
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The parameters to characterize both materials are the elasticity modulus E, and the Poisson coefficient ν, 

the length of the contact area (a) is given by l.   

The implementation of Hertz’ theory in Matlab is rather straightforward as shown in Figure 4 as a flow chart. 
There are three equations: formula (1), (2) and (3) and there is one validation check to verify that the 
contact is non-conformal instead of conformal. In case of a conformal contact is this theory not able to 
calculate the normal pressure distribution p(x).  

The input parameters of the flowchart are the physical parameters of the problem: FN, E, ν, R as well as one 
computational parameter, xmesh, to discretize the contact area. 

 

 

Figure 4. Flow chart to calculate normal stress distribution (Hertz) in Matlab. 

 

2.2 Tangential stress distribution 

The second stress distribution discussed in this paper is the tangential stress distribution q(x). This stress 
distribution is more complex than the normal stress distribution p(x) because the tangential stress 
distribution depends on three forces: FN, Q and FFAT that interact with each other.  

There is not one analytical formula which is valid for all combinations of FN, Q and FFAT. However, some of 
the force combinations lead to an analytical solution of the tangential stress distribution q(x). Unfortunately, 
other combinations of the applied forces cannot be solved analytically, though the tangential stress 
distribution q(x) can be approximated analytically with an error smaller than one percent [8]. 

The next paragraph 2.2.1 focuses on contacts with a normal load FN and a tangential load Q, the dynamic 
load FFAT is zero in that case. In the subsequent paragraph 2.2.2 we consider the three forces to interact 
simultaneously on the specimens. The last part of this section 2.2.3 gives a flowchart to link the discussed 
theories. 

2.2.1 Normal and tangential loading of a contact  

Consider only a normal force FN between the specimen and the pad in Figure 1. A normal stress distribution 
appears in the contact area as discussed in section 2.1. In absence of a tangential force Q, and because 
p(x) and q(x) are decoupled, we can conclude that the tangential stress distribution q(x) will be zero over 
the whole contact area.  

If the tangential force Q is bigger than the limiting Coulomb force (µ FN), the contact is appointed as global 
slip. The tangential stress distribution q(x) is similar to the parabolic normal stress distribution p(x), only the 

amplitude is scaled with the coefficient of friction , see Figure 5. 
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Figure 5. Tangential stress distribution q in a line contact with FN > 0; Q > µFN 0; Ffat = 0. 

A third loading case is most interesting with respect to ‘pure fretting’ conditions. Pure fretting is found when 
the tangential load Q is smaller than the limiting Coulomb force (±µFN) and different from zero. From the 
perspective of Coulomb, this type of contact is globally sticking. However in the contact area there is locally 
some small slip between the contacting specimens. The contact area is locally divided in three areas: one 
area where the specimens are sticking to each other, and two areas with slip between the specimens. This 

reasoning is first found by Mindlin [9] and Cattaneo [10]. They assumed initially no slip () in the contact 
and calculated analytically the tangential stress distribution q1(x),Figure 6a. Combining this stress 
distribution with the limiting stress distribution given by Coulomb (µFN) indicates which parts of the contact 
area are slipping: q1(x)>µFN and which are sticking: q1(x)<µFN.  

An analytical value c, formula 4, can be calculated as the border between the central stick zone (|x|<c) and 
the surrounding slip zone (c<|x|<a). The tangential stress distribution q(x) is calculated as a subtraction of 
two parabolas, one is the Coulomb parabola (µFN) minus a scaled similar parabola, equation 5.  
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Figure 6. Tangential stress distribution q in a line contact with FN > 0; Q ≠ 0; Ffat = 0. 



 

2.2.2 Combination of normal, tangential, and fatigue loading in a contact 

Addition of a global fatigue load on top of the fretting problem complicates the tangential stress distribution. 
Most remarkable is that the fatigue load can reverse the direction of the slip within the contact area. When 
only a normal force FN and a fatigue force FFAT  are applied in Figure 1, the tangential stress distribution 
should be in equilibrium (Q=0). However, physically seen can the tangential stress distribution q(x) not be 
zero over the whole contact area because the fatigue specimen is axial loaded/stained, where the pad is 
axial unloaded. This loading mismatch results in a tangential stress distribution q(x) between the two 
specimens which is point symmetric in x=0 (Figure 7). The analytical solution is given by Tur et.al. in [8], a 
general overview of the calculation method is given on the next page.  

 

Figure 7. Tangential stress distribution q in a line contact with FN > 0; Q = 0; Ffat ≠0. 

 

The last loading condition that is considered in this paper is with all three forces applied in Figure 1. The 
combination of tangential force Q and fatigue force Ffat results -as in previous loading cases- in a contact 
area that is centrally sticking and adjacently slipping. The direction in  the  slipping areas is governed by Q 

and Ffat, however the local slip in both slipping areas can be in one direction only (cf. Q) or in opposing 

directions (cf. Ffat). Both cases will be calculated with a different analytical approach, the first tangential 
stress distribution q(x) for unidirectional slip is analytically given by Hills and Nowell [11]. The second 
loading case with resulting reverse slip is an approximate calculation given by Tur et. al. [8].    

The case of unidirectional slip (cf. Q) in the contact indicates that the tangential stress q(x) is as well 
unidirectional. The distribution of q(x) was first analytically calculated by Hills and Nowell [11] by a similar 
reasoning as Mindlin and Cattaneo. Analogous as the latter is the tangential stress distribution q(x) 
modelled as a perturbation on the limiting Coulomb parabola, formula 6. The only difference is that the 
location of the sticking zone is shifted with a distance e compared to the loading case where the fatigue 
force is absent. The eccentricity e is logically a function of the fatigue force Ffat and can be calculated 
according to formula 7. 
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The tangential stress distribution q(x) in this case is show in Figure 8. Note that formula 6 is only valid when 

e+c a, which means that the shifted stick zone should be inside the contact area. However, if the fatigue 
force Ffat is sufficiently high, the latter boundary condition will be violated and formula 6 is not valid 
anymore. 

 

Figure 8. Tangential stress distribution q in a line contact with FN > 0; Q ≠ 0; Ffat ≠ 0. 

 

For the case of high fatigue load and resulting reverse slip it is impossible to calculate the tangential stress 
distribution q(x) as an analytical closed form solution. Unlike previous solutions we will use an 
approximated solution to calculate analytically the tangential stress distribution q(x). The approximated 
solution is given by Tur et.al. in [8], in this paper we will restrict ourselves to a brief overview of the theory.  

The contact area is again partitioned in a central stick zone, with surrounding two sliding zones. In the 
sliding zones we know that q(x)=±µp(x) (Figure 9a, red dotted line) and that both sliding zones will slip in 
opposite directions. In the sticking zone of the contact is the tangential stress distribution q(x) approximated 
by the subtraction of two parabolas (Figure 9a, green dashed line), which are parametrically defined by 
(c’,d’; c”,d”; and two intersections with ±µp(x)).  

For a given loading case (FN, Q, Ffat) one can construct a tangential stress distribution based on: c’,d’,c”,d” 
and evaluate how similar this solution is to reality. A least squares fitting algorithm is used to find the best 
combination of c’,d’,c”,d” for a given loading case. For a wide range of loading cases is this optimization 
performed and four lookup tables are constructed for c’,d’,c”,d”, based on the parameters (FN, Q and Ffat). 

An analytical method to obtain the tangential stress distribution q(x) for contacts in reverse slip is hereby 
simplified to the interpolation in four tables and a few summations. This approximation achieves an 
accuracy better than 1%. 

  
 
    (a)         (b) 
 
Figure 9.Tangential stress distribution in a line contact with FN > 0; Q ≠ 0; Ffat ≠ 0.(a) Construction,(b) Result



 

2.2.3 Procedure to calculate the tangential stress distribution q(x) in Matlab  

In previous paragraphs we discussed some analytical solutions to calculate the tangential stress distribution 
q(x) depending on the applied forces. The link between the theories to obtain a unified approach is given by 
the flowchart in Figure 10. This flow chart is successfully implemented in a Matlab script at Labo Soete, 
Ghent University. 

 

 

 

Figure 10. Flowchart to calculate tangential stress q(x). 

 

3 CONCLUSIONS 

This paper presents a framework to calculate in an analytical way the normal and tangential stress 
distribution in a fretting fatigue contact as shown in Figure 1. A Matlab script based on this framework is 
developed at Labo Soete, Ghent University and calculates the normal and tangential stress distribution 
regardless the combination of applied forces. 

Most expressions for the tangential stress distributions are analytically derived and can therefore be used 
as a reference for other calculation techniques such as finite element calculations. The scripts can later on 
be extended with crack initiation and crack propagation modules to calculate the lifetime in fretting fatigue 
conditions. As last, the script can be used to gain basic knowledge about the contact mechanics in fretting 
fatigue conditions. 



4 NOMENCLATURE   

β  Dunders’ parameter    - 

 Coefficient of friction    - 

ν Poisson coefficient    - 

a Half width of the contact area    mm 

A Cross section ( Ffat) of the fatigue specimen  mm² 

c Border between symmetrical stick and slip regime  mm 

c’,c” Borders between stick and slip regime   mm 

d’,d” Position of construction parabola (Tur’s theory)  mm 

e Eccentricity of the stick area    mm 

E  Elasticity modulus    MPa 

FN Normal load    N 

Ffat  Fatigue load    N 

l Length of the contact area    mm 

p Normal stress distribution    MPa 

q Tangential stress distribution    MPa 

q1 Tangential stress distribution, assumption of no slip MPa  

Q Tangential load    N 

R Radius of the cylindrical body     mm 

x Length co-ordinate in the contact area   mm 

x’ Length co-ordinate in the stick area.   mm 
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