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Abstract In this paper, a review of some techniques proposed in the literature for modelling crack 
initiation in adhesively bonded joints is presented. The techniques reviewed are: a) the singular intensity 
factor, b) the inherent flaw size, c) Cohesive-zone model (CZM) and d) Continuum Damage Mechanics 
(CDM). The singular intensity factor characterizes the stress singularity at the corner point and can be 
used as a failure criterion to predict crack initiation. The inherent flaw method technique assumes that a 
small crack having a fraction of millimetres is initiated at the singular point in order to develop a fracture 
mechanics criterion for crack initiation. The strain energy release rate for an un-cracked specimen is used 
to determine the size of the inherent flaw. The cohesive zone model (CZM) technique is based on 
defining parameters from fracture mechanics test specimens and using them to model failure of the joints. 
Continuum Damage Mechanics makes use of thermodynamics principles in order to derive a damage 
evolution law. In this damage evolution law the damage variable (D) is expressed as a function of number 
of cycles, applied stress range and triaxiality function. Furthermore, the possibility of using the eXtended 
Finite Element Method (XFEM) to predict crack initiation is elaborated.  
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1       INTRODUCTION 

Adhesive bonding is currently gaining popularity in many advanced industrial applications such as 
aerospace,  automobiles,  ship structures, electronics,  packaging,  medical equipments  and  human 
bodies (dentistry and orthopedic), and shoe industries, etc. The main advantages of adhesive bonding 
compared to other joining techniques such as welding, riveting,  bolting,  and brazing  are: a) the ability to 
join dissimilar materials and damage-sensitive materials,  b) better stress distribution, c) weight reduction, 
d) fabrication of complicated shapes, e) excellent thermal and electrical insulation properties and f) 
greater fatigue resistance. The design of the joint is critical to the structural integrity and safety of building 
components. To date, various adhesive joints appear in the literature such as butt, cleavage, single lap 
and scarf joints. While enjoying much success, the use of each joint dependent on its application and 
therefore, many conditions have to be met to ensure no occurrence of failure. If we want to speak about 
the integrity of these joints, we must know that during its manufacturing process in the industry there will 
be cracks or flaws. This defect will be inevitable, and the presence of these flaws will affect the 
performance of adhesive bonding in service, or even cause catastrophic failure to the joint. 

From the literature, Groth and Brottare [1] studied singular intensity factor for but joint using finite element 
analysis and they found that the stresses at the interface region between adhesive and substrate at the 
free edge can be described by a singular intensity factor Q. They also discovered that the fracture criteria 
related to Q will be applicable for both linear elastic material and nonlinear plastic material.  

Anderson and De Vries [2] have introduced another technique based on fracture mechanics, known as 
the “inherent flaw method “. In this method a small crack (a fraction of millimetres) is initiated at the 
singular point and strain energy release rates are measured. The size of this crack has to be defined 
experimentally by testing several specimens with different crack lengths and interpolating �� using the 
load of the untracked specimen. But the drawback of this method is the need of large number of 
experiments to determine the inherent crack size and the reduction of accuracy in introducing this very 
small crack. Further criticism on this method is that it may be not appropriate to represent an untracked 



specimen by a cracked one. However, the argument of Anderson and Devries suggested that the 
inherent flaws exist naturally in all bonds because of the bubbles of air. 

Liljedahl et al [3] has studied the resistance of adhesively bonded aluminium, composite and dissimilar 
adherends joints exposed to humid environments. A cohesive zone model (CZM) technique was used to 
model failure of the joints, where the governing parameters were defined from fracture mechanics test 
samples appeased in a range of humid environments. The reduction in residual strength of aluminium 
single lap joints (SLJ) inundated in de-ionised water was predicted. For joints submerged in tap water the 
deterioration was faster than predicted and there were signs of corrosion. It was found that some 
disagreement between the experimental and the predicted data of the aged composite SLJ took place. 
The predicted deterioration overestimated the residual strength of the double lap joints (DLJ). It was 
suggested that this might be because of a residual stress-enhanced degradation mechanism. Large 
residual stresses were induced in the dissimilar adherends joints caused by the mismatch of coefficients 
of expansion of the substrates.  

In the past, the Finite Element Method (FEM) has been used for the simulation and strength 
prognostication of bonded joints. Cohesive-zone models (CZMs) were proved to be a powerful technique 
in modelling damage growth, surpassing some restriction of the FEM. In spite of this fact, they still have 
the constraint of damage growth only at a known growth path [3]. The eXtended Finite Element Method 
(XFEM) is a new amelioration of the FEM, developed to allow the growth of discontinuities in bulk solids 
along an arbitrary path, by enriching degrees of freedom with special displacement functions. With this 
technique, solution for the main restriction of CZMs could be found [4]. 

 

2       SINGULAR INTENSITY FACTOR 

Groth and Brottare [1] studied singular intensity factor for butt joints using finite element analysis. Close to 
the singularity at the free edge of the joint, the stresses are characterized by:  
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Where �the strength of singularity and QY is is the singular intensity factor. Equation (1) is applicable to 
elastic and elasto-plastic materials. The size of plastic zone is determined by:  
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Gradin and Groth [5, 6], in their work, which concerns with the finite element analysis, they considered the 
wedge angles shown in Figure 1, where �� and �� equals to π/2. By using the displacement near the 
singularity, the singular intensity factor ��  can be obtained from FE results. The expression of �� can be 
re-arranged from Equation (1) as:  
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Equation (3) is acceptable for linear elastic material. &� is the displacement in the y direction at the 
singular point (x=0) and &� is the displacement in y- direction for ant coordinate x. Plots of �� versus � 


  
(the non-dimensional coordinate) for different materials are shown in Figure 2. From Figure 2, it can be 
seen that for all non-linear materials when �


 → 0, �� goes to infinity. For the linear elastic case, when  �
 →
0, then �� equals to 13.6 MPa. By considering �� at some distance from the singularity point, it is possible 
to evaluate �� for nonlinear materials. 

 

 



 

 

 

It is important to know the size of the plastic zone in order to characterize failure in elasto-plastic 
materials. A first strict expression of the plastic zone size may be obtained by supposing a stress and 
stain field of the bi-material wedge shown in Figure 1. The first form of the stress filed is given by equation 
(1), while the plastic zone size ,- is given by equation (2) for the case of elastic perfectly plastic material. 
In such a case the material starts to yield when ��=�-.  This is shown in Figure 3 when the stresses 
above �- are cut down in this case. From the nonlinear FE analysis, the plastic zone size is obtained. 
Figure 4  shows the definition of plastic zone sizes, where rs is given by equation (2), rmax is the maximum 
size of plastic zone with angle ./ and ,�, ,0 are the size of plastic zone where x=0, y=0, respectively. The 
results showed that for all materials the estimated plastic zone ,- for 123/< 0.8 % was larger than the 
maximum plastic zone.   

 

 

 

 

 

 

 

 

 

 

 

 

The angle, at which the maximum plastic zone size was located, ranged from 30 to 45°and would 
converge to 45°when the materials became near the linear elastic curve. The stresses at the free edge �� 
may be reached by two ways for the linear elastic case; the first one from FE model and the second one 
from equation (1). It was found that, the maximum plastic zone size for valid small scale yielding equal to 
0.03 mm, in the condition of supposing that ,6 was ten times larger than,-. This was identical to a nominal 
strain level around 0.45 %. 

Figure 1. Geometry of bi-material wedge [5, 6] Figure 2. Singular intensity factor for different 
materials [1] 

Figure 3. Normal stresses along the bi-material 
plane and 1st approximation of plastic zone size [1] 

Figure 4. Definition of plastic zone sizes [1]  



With the concept of ��, a failure criterion can be developed. It is assumed that the fracture will start in the 
samples as soon as a critical value of the singular intensity factor is achieved, i.e. 

 �� 7 �8	9: � no fracture 

 �� D �8	9: � fracture initiation  (4) 

Where �8	9: is the critical value of the singular intensity factor. A failure criterion given by equation (4) can 
be applied under small scale yielding condition. 

 

3         INHERENT FLAW METHOD 

Anderson and De Vries [2] have introduced another technique to predict crack initiation based on fracture 
mechanics, known as the “inherent flaw method “. In this method, a very small crack is initiated at the 
singular point and strain energy release rates are measured. The size of this crack has to be defined 
experimentally by testing several specimens with different crack length and interpolating �� using the load 
on the untracked specimen. One of the drawbacks of this method is the need of big number of 
experiments to determine the crack size. An inherent flaw size (��) is defined as the amount of de-bond 
needed to product the suitable critical energy release rate at the measured peak load in samples with no 
initial de-bond. By using the inherent flaw size and the critical energy release rate, the strength in many 
bonded joints can be predicted. It was found that, adhesive thicknesses between 0.15 mm and 25 mm 
introduce failure loads varying from 1900 N for thin bonds to 180 N for thick bonds, respectively, as 
shown in Figure 5. For joints with adhesive layer thicker than 2.5 mm, adhesive failure started at the bond 
edge while for joints with adhesive layer thinner than 2.5 mm, it will be initiated near the centreline of the 
joints. The strain energy release rate was obtained using finite element method. In order to determine the 
inherent flaw size, the critical energy release rate was plotted against the crack length as shown in Figure 
6. Using the strain energy release rate the un-cracked specimen, an inherent flaw size was predicted. In 
most cases failures were cohesive into the adhesive layer near the bond edge. It was then assumed that 
failure initiated at the adhesive/adherend interface adjacent to the bond edge, then propagated into the 
adhesive and continued through the centre of the adhesive layer.  

 

 

 

 

 

 

 

 

Figure 5. Effect of adhesive thickness on de-bond 
load [2] 

Figure 6. Critical strain energy release rate as a 
function of crack length [2] 



Furthermore, Anderson and De Vries [2] have tested non-tapered double cantilevered beams. In these 
experiments, a tensile force normal to the bond line of two parallel plates was applied and the crack was 
propagated incrementally by loading and unloading process. Then a load-displacement curve was 
obtained for different crack lengths. From these results the change in compliance of the specimen 
according to the change in crack length may be calculated. This allows calculation of Gc as:  

              FG = H$
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Where p is the crack propagation load, b is the specimen width and dc/da is the change in compliance 
with crack length.  

 

4          COHESIVE ZONE MODEL 

Liljedahl et al [7] have used a cohesive zone model (CZM) technique to model failure of adhesive joints, 
where the governing parameters were defined from fracture mechanics test samples. A range of aging 
humid environments were considered. Different types of joints were tested, namely single lap metallic 
joints with Aluminium substrates (Figure 7(a), Al-Al SLJ), single lap composite joints with Carbon Fibre 
Reinforced Plastic substrates (Figure 7(b), CFRP-CFRP SLJ) and double lap metal to composite joints 
with one substrate Aluminium and one Carbon Fibre Reinforced Plastic (Figure 7(c), Al-CFRP DLJ). The 
failure of the joints was simulated using a CZM. A two-parameter CZM was used where division in mode 
I, II and III were accounted for. The CZM parameters are the fracture energy (Γo) and the tripping traction 
(�L) as indicated in Figure 8. The stiffness before  unloading  was  set  high  to  obviate any  considerable 
compliance  of  the  CZM  element  before  the  beginning of damage. For all numerical modelling work, 
the commercial FE package, ABAQUS (Hibitt, Karlsson & Sorensen, Inc) was used. Non-linear springs 
(ABAQUS 6.5:  18.1.1) were used to model the traction-separation law at the interface. CZM is CPU 
intensive and it was therefore comfortable to model the joints in 2D if convenient. Large diffusion and 
stress analysis without CZM elements were thus done to use a range of 2D and 3D elements, with and 
without residual strains to decide whether 2D models provide good approximation or not. This was 
discussed further according to each joint formalization. Firstly, the CZM parameters were established for 
different moisture concentration using the MMF (Mixed Mode Flexure) and NCA (Notched Coated 
Adhesive) specimens. These parameters were then used to prognosticate the response of the SLJ and 
DLJ joints. The adhesive continuum was modelled using a linear Drucker–Prager model with a friction 
angle of 32.51 [7] and moisture-dependent hardening, predicted experimentally from the stress–strain test 
of bulk adhesive samples. 

 

 

 

 

 

Figure 7. Dimensions of the lap joints, width 25 mm, 
(a) Al–Al SLJ, (b) CFRP– CFRP SLJ and (c) Al– 
CFRP –Al DLJ. (All dimensions in mm)  [7] 

Figure 8. Cohesive zone model [7] 



5         CONTINUUM DAMAGE MECHANICS 

Based on thermodynamics principles, a damage evolution law was derived by Abdel Wahab et. al [8]. The 
damage variable (D) as a function of number of cycles, applied stress range and triaxiality function is 
given by:  
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Where D is the damage variable, N is the number of cycles, eqσ∆  is the range of von-Mises stress, RV 

the triaxiality function, m the power constant in Ramberg-Osgood equation and A and β  are damage 
parameters to be determined experimentally. For a strain-based controlled test, the damage variable D, 
can be determined as: 
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Where 
*
eqσ∆ is von-Mises stress range for virgin material (undamaged state) or at stabilization of 

harding. The damage parameters A and β  can be calculated for each applied load level by curve fitting 
Equation (6) to the experimental results, determined by Equation (7). In order to use the damage 
evolution law, the triaxiality function is required and, therefore, two types of stress should be determined 
from FEA; namely von Mises equivalent stress and Hydrostatic Stress. The triaxiality function is defined 
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). At failure, when the number of cycles to failure, Nf, is reached, D 

becomes 1 (fully damaged state) so that fatigue lifetime can be predicted as [8]: 
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By curve fitting of Equation (8) to experimental results, the damage parameters A and β can be 

determined as function of applied stress eqσ∆ . 

6         EXTENDED FINITE ELEMENT 

In the past, the Finite Element Method (FEM) has been used for the simulation and strength 
prognostication of bonded joints. Cohesive-zone models (CZMs) were proved to be a powerful technique 
in modelling damage growth, surpassing some restriction of the FEM. In spite of this fact, they still have 
the constraint of damage growth only at a known growth paths. The eXtended Finite Element Method 
(XFEM) is a new amelioration of the FEM, developed to allow the growth of discontinuities in bulk solids 
along an arbitrary path by enriching degrees of freedom with special displacement functions. Using this 
technique, solution for the main restriction of CZMs might be found. Campilho et al. [4] have applied 
XFEM to predict the strength of adhesive joints and compared the results to CZM technique. In applying 
XFEM to fracture mechanics, enrichment functions for nodal displacements are used to simulate the 
separation of crack faces and the crack tip behaviour. The elements along the crack faces are enriched 
with a discontinuous function, while the elements at the crack tip are enriched with a near-tip asymptotic 
displacement function. For Linear Elastic Fracture Mechanics, the XFEM displacement field is 
approximated as: 



  (9) 

N is the number of the standard finite element nodes, Ncut the number of nodes which belong to elements 
completely cut by the crack faces and Nfront the number of nodes containing a crack front. Ni are the 
standard finite element shape functions, H is a function which value is 1 if x is above the crack surface 
and -1 if x is under the crack surface. For LEFM: 

 
For crack initiation, an equation similar to Equation (9) may be proposed by adding enriched functions 
that approximate stress singularity, plasticity, damage evolution (Equation (6)) and weak interface ahead 
of the singular point. 
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