

 Publishing license: https://creativecommons.org/licenses/by/4.0/ CC-BY 4.0

Title:

Building and Deploying a Classification Schema using Open Standards
and Technology

Author(s) and contributors:

C.A. Romein
A.W. Wagner
J.J. van Zundert

Issue: "Gute Policey" and police ordinances: local regimes and digital
methods

Year: 2023
DOI: 10.21825/dlh.85751
Keywords: Legal History, Taxonomy, Tools, RHONDA, Tutorial, git, SKOS, GitHub

pages, GitHub actions, Taxonomy, Tools, RHONDA, Tutorial, Git, SKOS,
Reconciliation, GitHub pages, GitHub actions

Abstract:

This tutorial fully introduces Building and Deploying a Classification
schema using Open Standards and Technology. Beyond accessing the
command line, no prior knowledge is assumed as all the steps are
described in detail. However, the tutorial will take you through some
more complex technical steps. To profit best from the example
workflows of the last chapter, it is good to know how to work with
OpenRefine and/or have a TEI Publisher server set up to play around
with. With this tutorial, you - the reader - should gain an understanding
of: - what different classification schemes can contribute to your
project, - what to pay attention to when building a classification
scheme, - how to code the classification scheme (in SKOS), - how to
publish the classification scheme (on GitHub pages), - what some
possible scenarios of using classifications schemes in actual project
workflows are.

https://creativecommons.org/licenses/by/4.0/

Building and Deploying a Classification Scheme using Open Standards
and Free Platforms

𝐶.𝐴.𝑅𝑜𝑚𝑒𝑖𝑛1; 𝐴.𝑊𝑎𝑔𝑛𝑒𝑟2; 𝐽.𝐽.𝑣𝑎𝑛𝑍𝑢𝑛𝑑𝑒𝑟𝑡1

1 Huygens Instituut voor Nederlandse Geschiedenis en Cultuur, Amsterdam.
2 Max Planck Institute for Legal History and Legal Theory, Frankfurt amMain.

All three authors contributed equally to this tutorial and are to be considered first authors, the order
of the names is merely alphabetical and has nomeaning other than this.

Keywords: controlled vocabulary, classification, taxonomy, legal history, police ordinances, subject
matter of legal regulations, tools, RHONDA, tutorial, linked open data, SKOS, reconciliation, data clean‑
ing, annotation, persistent identifiers, git, GitHub pages, GitHub actions, w3id.org, skohub‑vocabs,
skohub‑reconcile

Contents

• Building and Deploying a Classification Scheme using Open Standards and Free Platforms

– Contents
– Introduction and Scope

* Pre‑requisites and requirements

* How difficult is this tutorial?

* Scholarly case study: Police Ordinances
– I. Classification Schemes and (as) Interoperable Data

* Interoperability and controlled vocabularies

* (Types of) controlled vocabularies

* Taxonomy classification schemes

* Authority data (providers)

* So why would you want to use a classification scheme?
– II. Building Your Own Classification Scheme

* Steps and consideration (a)

1

* Steps and consideration (b)

* What is SKOS and how to encode your scheme?
– III. Introduction to Basic git Commands and GitHub Features

* Setting up a GitHub repository

* Setting up the local repository

* Communicating between repositories

* Your first push to a repository

* Updating from a repository

* Disciplining yourself: creating the routine
– IV. Deploying Your Classification Scheme

* Building your files automatically with GitHub Actions and the skohub‑vocabs Docker
image

* Publishing your classification scheme with GitHub Pages

* Creating Persistent Identifiers with w3id.org

* Another git/GitHub feature: forking andmerging repositories
– V. Integrating Your Classification Scheme in Workflows

* Preparation: Offer your vocabulary via Reconciliation API with skohub‑reconcile

* Workflow 1: Reconciling a dataset with OpenRefine

* Workflow 2: Annotating full text with TEI Publisher

* Conclusion
– VI. Further Reading and Resources

* Literature

* Software and Platforms
– Acknowledgements

Introduction and Scope

This tutorial offers a full introduction to building and deploying a classification scheme using open
standards and freely available internet infrastructure. “Full introduction” heremeans that itwill cover
all the steps frombeginning to end, from conceptualising the classification scheme to publishing and
intergating it in scholarly workflows. With this tutorial, you – the reader – should gain an understand‑
ing of:

• what different classification schemes can contribute to your project,
• what to pay attention to when building a classification scheme,

2

• how to encode the classification scheme (in the SKOS datamodel and in its turtle serialization),
• how to publish the classification scheme (onGitHubPages taking advantage of GitHub Actions),
and

• what somepossible scenarios of using classifications schemes in actual projectworkflows (data
reconciliation on OpenRefine and text annotation in TEI Publisher) are.

In providing a discussion of all the steps, this tutorial necessarily touches on on some very technical,
aswell as on some theoretical aspects. We acknowledge that this risks giving an incoherent character
of the piece as a whole, or boring the reader with some of the material, but we think it is worthwhile
bringing together all the various aspects for once.

Alsowewill assumewe are talking of taxonomy development and usage as a collective and collabora‑
tive enterprise. The whole point of a taxonomy is to facilitate collaboration and interoperability and
usually there is a scholarly community the resource is meant to serve. So while there may have been
more simple and streamlined solutions, the mechanisms we will discuss are designed to accommo‑
date collaborative scenarios.

The tutorial is split into five chapters, plus further reading.

Pre‑requisites and requirements

Avery basic understandingof using the command linewill beneeded. Other than that, noprior knowl‑
edge is assumed as all the steps are explained in detail. In particular, as chapters IV and V massively
rely on git, we have included a detailed introduction to this software and the corresponding work‑
flows in chapter III. If you are already familiar with this tool (and terms like “push”, “staging area”,
“fork”, “pull request” do not even raise an eyebrow), you are invited to skip chapter III. We assume
you have installed the git software and a steady internet connection that can support downloading
software and uploading data. We have linked to resources in case you would need to acquire these
basics.

This tutorial was written for and tested against:

• git 2.35.1
• skohub/skohub‑vocabs‑docker:latestDocker image fromNovember2021 (Digest344c314bab2e)

When discussing particular software or platforms beyond these basics, we try tomention alternatives
that you could use to achieve the same things.

To properly workwith the deploymentworkflowwe outline in chapter III, youwill need an account on
GitHub (or a comparable platform).

3

https://git-scm.com/
https://git-scm.com/
https://hub.docker.com/r/skohub/skohub-vocabs-docker
https://github.com/

The exampleworkflowsof the last chapter demonstrate how to integrate a scheme’s deploymentwith
OpenRefine or TEI Publisher workflows, so you will profit best from this chapter if you are somewhat
familiar with the purposes and typical workflows of these tools. However, the chapter has a rather il‑
lustrative function and knowledge of the tools is not necessary to get an idea of what is being demon‑
strated. If you do want to perform all the instructions of the last chapter yourself, you will need to
install a copy of OpenRefine and have a TEI Publisher server set up to play around with.

How difficult is this tutorial?

The steps in this tutorial are unambiguous and there are very few choices you need to make as you
work through this tutorial. However, it will take you through a few somewhat complex technical steps.
You will learn some new terms and gain familiarity with the GitHub web interface.

The tutorial should take a few hours to complete. Youmay find it useful to repeat sections or chapters
in order to strengthen your understanding. Technical terms have been linked to informative websites
or blogs.

We would like to encourage you to think about a dataset of yours and a set of terms you would want
to use in order to classify some of it. It will be much more effective – and more fun – for you to do all
the steps with data and terms that you can relate to yourself.

In the further reading and resources section you may find additional information to help you with
potential issues. For more background to some of the steps, it may be helpful to consult the Pro‑
gramming Historian lessons on OpenRefine, on GitHub pages, on Linked Data, or on the pull requests
workflow at GitHub.

Scholarly case study: Police Ordinances

Thematerial of this tutorial centers on Policeyordnungen der Frühen Neuzeit, an online repository of
latemedieval and earlymodern normative texts (‘police ordinances’). This repository consists of data
based on 12 printed volumes of the ‘Repertorium der Policeyordnungen der Frühen Neuzeit’ which
were edited by Karl Härter andMichael Stolleis at theMax‑Planck‑Institute for Legal History and Legal
Theory in Frankfurt am Main (Germany). It contains data of over 200,000 medieval and early modern
normative texts from 68 territories and imperial cities, as well as from other indexing projects, from
which there was no complete data‑overview possible (due to archival damages etc.). It should be
noted that these territories and imperial citieswerenot limited to theHolyRomanEmpire (‘Germany’),
but Denmark, Sweden, and some towns of the Swiss Confederation have also been included.

Each of the contributors to the book series had set out to describe ordinances with metadata includ‑
ing legislators, dates, places, jurisdictions, types of ordinances, but also subject matters that the or‑

4

https://openrefine.org/
https://teipublisher.com/index.html
https://openrefine.org/
https://teipublisher.com/index.html
http://programminghistorian.org/en/lessons/cleaning-data-with-openrefine
http://programminghistorian.org/en/lessons/cleaning-data-with-openrefine
http://programminghistorian.org/en/lessons/building-static-sites-with-jekyll-github-pages
https://programminghistorian.org/en/lessons/intro-to-linked-data
http://programminghistorian.org/en/lessons/collaborative-blog-with-jekyll-github#reviewing-and-publishing
http://programminghistorian.org/en/lessons/collaborative-blog-with-jekyll-github#reviewing-and-publishing
https://policey.lhlt.mpg.de/web/
https://www.lhlt.mpg.de/
https://www.lhlt.mpg.de/

dinances dealt with. In 2021, the online version of the Policeyordnungen der Frühen Neuzeit was
launched with data from the German‑speaking areas. This will be expanded with the Danish and
Swedish sources in the comingmonths.

Of particular relevance for this tutorial, the subject matters of ordinances were classified based on
an extensive catalog of descriptors that had been developed during the initial project in the 1990s
and that has since been re‑used in, or has inspired analogous catalogs in several other, independent
projects. Given the European scale of ‘police’ legislation and the considerable interest in comparing
the data of various projects, but also given the presence of various languages and the hierarchical
structure of the descriptors in the original catalog, Annemieke Romein and Andreas Wagner jointly
startedworkingona formally encoded, controlledvocabulary/taxonomyof subjectmatters from2019
onwards. (See for an example within the project Entangled Histories here). This taxonomy will serve
as anexample throughout the tutorial; it canbeaccessedat https://w3id.org/rhonda/polmat/scheme
(and comments are very welcome).

Ourexperiencewith settingupacontrolledvocabularyhelpsexplain the scholarlymotivationsbehind
technical choices in this tutorial, but the classification scheme youwill develop over the course of this
tutorial can be considerably smaller and simpler. You will finish with a site where visitors can browse
and search your classification scheme, and with a permanent URL mechanism that allows records
from independent projects to refer to concepts of your classification scheme. You will also have seen
how such a resource can be integrated into different workflows of your own or other, independent
projects.

I. Classification Schemes and (as) Interoperable Data

Interoperability and controlled vocabularies

In information sciences, classification schemes are used to organise information: You have a list of un‑
equivocal terms and a rule prescribing, at least in a certain application context, to refer to phenomena
of your domain of interest exclusively using the terms from your list (i.e. you have a controlled vocab‑
ulary), and you apply terms of your vocabulary tomultiple pieces of your data and thus facilitate data
profiling, and information retrieval. The idea of retrieving bits of information from different places of
the data set because they are associated to the same descriptor can be extended to querying even
multiple datasets/databases, provided they are using the same classification scheme: Understand‑
ing the logic of the vocabulary, the user of a cross‑domain search engine would, ideally, not need to
know the underlying data andwhat justified the application of descriptors in each individual data set,
in order to collect a set of relevant data and then find out details in a second, close reading step.

5

https://policey.lhlt.mpg.de/web/
https://policey.lhlt.mpg.de/web/assets/03_systematik_index_policeymaterien.pdf
https://lab.kb.nl/about-us/blog/categorisation-early-modern-ordinances
https://w3id.org/rhonda/polmat/scheme
https://en.wikipedia.org/wiki/Classification_scheme_(information_science)
https://en.wikipedia.org/wiki/Data_profiling
https://en.wikipedia.org/wiki/Data_profiling
https://en.wikipedia.org/wiki/Information_retrieval

For instance, imagine searching library holdings using the Dewey Decimal Classification (DDC) or the
Library of Congress Subject Headings (LoCSH): you do not even have to learn about cataloging and
indexing habits of your local library; instead, if you are sufficiently versed in the respective classifi‑
cation scheme, you can use the library’s discovery system right away and find the literature that is
of interest to you. What specific relation to the searched‑for subject heading some particular book
may have can only be understood by actually reading the book, but finding it was an important first
step. Interoperability means that multiple systems, or parts of these systems, can exchange informa‑
tion and immediately use the exchanged information, and classification schemes and other types of
controlled vocabulary are a central pillar of interoperability efforts (Zeng and Chan 2004). In terms
of our example, imagine a single discovery service for multiple libraries like OCLC’s worldcat, which
presupposes that participating libraries are using the same classification scheme, and also that this
information can be queried externally in an identical way.

As another example, consider annotation scenarios: While document retrieval relies mostly on clas‑
sification of complete documents, you could also classify just portions of documents, like areas of
images or spans of a text. Named Entity Recognition (NER), for instance, is a very common method
of Natural Language Processing (NLP) that seeks to locate and classify mentions of persons, organ‑
isations, places, events, quantities etc. (without necessarily identifying which person is being men‑
tioned). Suppose you want to compile training data for some task, and you manage to find a couple
of datasets relevant for your domain, it is helpful if they in fact express the presence and location of
the same entities in the sameway, that is, if they use interoperable annotations. Similarly, large insti‑
tutions concernedwith collecting cultural data from various sources like Europeana often are striving
to establish and promote with their data providers interoperability mechanisms at some level.

(Types of) controlled vocabularies

The most prominent structures of controlled vocabularies are, listed from concrete to abstract, or
from flat to complex (see for more details e.g this blogpost):

• A glossary, such as a keyword‑ or index‑list is an unstructured (except for geographic locations
or alphabetical order) list of words. In the analogue version of the ‘Repertorium der Policeyord‑
nungen’, an equivalent can be found in the alphabetic index/indices of the volumes.

• A taxonomy refers explicitly to the classification of things and embeds some hierarchical rela‑
tionships between its concepts, like “X is a subclass of Y”. Ideally, it provides descriptors, defi‑
nitions and examples for its concepts. (For completeness’s sake, it should be mentioned that
there are taxononies the main relations of which are not generic relations, i.e. class/subclass,
but partitive relations, i.e. part/whole, or other types of relations or even mixtures of several
types; and there are taxonomies where a term can have multiple parent/broader terms (“poly‑
hierarchies”), e.g. “cats” having both “mammals” and “four‑legged animals” as parent cate‑

6

https://en.wikipedia.org/wiki/Dewey_Decimal_Classification
https://en.wikipedia.org/wiki/Library_of_Congress_Subject_Headings
https://asistdl.onlinelibrary.wiley.com/doi/full/10.1002/asi.10387
https://www.worldcat.org/advancedsearch
https://en.wikipedia.org/wiki/Named-entity_recognition
https://pro.europeana.eu/project/interoperability-of-annotations-and-user-sets
https://blog.thedigitalgroup.com/ontologies-vs-taxonomies-vs-thesauri-and-its-place-on-the-semantic-web
https://en.wikipedia.org/wiki/Taxonomy#Computing

gories. But such increased flexibility comes at the price of reduced toolkits capable of process‑
ing such taxonomies (cf. this blog entry). In this tutorial, we concentrate on monohierarchical,
generic taxonomies. For more details and recommendations, see SEMIC 2009.)

• A thesaurus is an extension to a taxonomy: It addsother relations to the concepts beyond super‑
/subclasses (e.g. opposites or other forms of ‘related to’ relations).

• An ontology is a ‘formal, explicit specification of a shared conceptionalization’ (Guarino et
al. 2009) of a domain of the world. It describes what type of entities can exist in this domain
and what relationships they may have. (On the distinction between ontologies and thesauri,
cf. Kless et al. 2015.)

As tools of computational knowledgeorganization, all these vocabularies are encoded in some formal,
machine‑readable language. Moreover, all the entries in the above list could express or be used as
classification schemes. but they differ in how much of your knowledge they allow to incorporate. In
otherwords, youcanuseanyof themtoapplydescriptorsof yourcontrolledvocabulary to the“things”
that you want to classify, and if you then encounter an instance of such a classification, you already
know that the classified entity also satisfies a more or less elaborate set of conditions: if you have
been using a taxomony, you may may be able to infer that the entity belongs to a super‑class and
super‑super‑class, if you have been using a thesaurus, you may be able to infer that it is typically a
part (or the opposite) of another entity, and if you have been using an ontology, then youmay be able
to infer that it must have certain properties and be related to other entities in specific ways.

Taxonomy classification schemes

Here and in the following, we will be using a monohierarchical taxonomy based on generic subclass‑
/superclass‑relations. In the Repertorium der Policeyordnungen the subject matters of ordinances
(German: Policeymaterien) show the hierarchical structure as indicated:

7

https://accidental-taxonomist.blogspot.com/2022/04/polyhierarchy-in-taxonomies.html
https://publica.fraunhofer.de/handle/publica/294684
https://en.wikipedia.org/wiki/Thesaurus
https://en.wikipedia.org/wiki/Ontology
https://iaoa.org/isc2012/docs/Guarino2009_What_is_an_Ontology.pdf
https://iaoa.org/isc2012/docs/Guarino2009_What_is_an_Ontology.pdf
https://doi.org/10.1002/asi.23268

Image 1. Indication of the hierarchical order of the subject matters, as found on the website of the
Repertorium der Policeyordnungen.
Source: https://policey.lhlt.mpg.de/web/

The numbers indicate the group and subgroup (“parent” classes), followed by a third specification
and then, after the colon, individual tags. Thus, the classification of the matters as metadata to the
original police ordinances is clearly visible to the user.

Authority data (providers)

Authority files can also function as way to standardise data and avoid double work when referring
to the same ‘thing’. The main distinction between controlled vocabularies and authority files is that
the former provide information about types, i.e. general concepts (‘universals’), whereas the latter
provide information about individuals (‘particulars’) of a certain kind (and they usually, but not neces‑
sarily, express this information using a controlled vocabulary the definition of which is not their main
business). For instance, contrast the DDC and LoCSH that have been mentioned with orcid, geon‑
ames, viaf or wikidata records. In fact, even book isbn numbers are an authority data mechanism.
What makes an authority file is first of all a convention, in which a community of practice agrees to

8

https://policey.lhlt.mpg.de/web/
https://en.wikipedia.org/wiki/Authority_control
https://orcid.org/
https://www.geonames.org/
https://www.geonames.org/
https://viaf.org/
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://en.wikipedia.org/wiki/International_Standard_Book_Number

use one single dataset of identifiers as point of reference for the task of expressing a specific informa‑
tion. Moreover, the dataset has to be accessible in ways that are convenient for themost frequent use
cases ‑ in practice, that means it has to be a webservice that allows for searching, getting contextual
information and that maybe offers API access for software developers. In other words, authority data
is a community convention and an information infrastructure. Which arewhatwe are building around
our classification scheme in this tutorial.

Sowhywould youwant to use a classification scheme?

In the caseof ourpoliceordinances, classes of subjectmatters are grouped into super‑ and subclasses,
so we are talking of a taxonomy as an explicitly hierarchical classification scheme, a part of which
could be visualised as follows:

Image 2. Police ordinances, first levels of the hierarchy.
Source: C.A. Romein, S. Veldhoen, M. de Gruyter, ‘The Datafication of Early Modern Ordinances’, DH
Benelux Journal #2 (https://journal.dhbenelux.org/journal/issues/002/article‑23‑romein/Images/fi
gure6.png)

This alluvial diagram is showing the five main topics of police ordinances in pink, subsequently split

9

https://journal.dhbenelux.org/journal/issues/002/article-23-romein/Images/figure6.png
https://journal.dhbenelux.org/journal/issues/002/article-23-romein/Images/figure6.png

out into 25 sublevels. Not shown in this visualisation, this is split even further into twomore specific
levels totalling up to 1,800 subcategories.

The high level of detail of our subject matters scheme does indeed serve a purpose: it allows re‑
searchers to aggregate or narrowdown their search results flexibly and to a great extent: For example,
searching for ordinances regulating land divisions, besides the entries that were tagged with “Land
Divisions” directly, you could make the search engine also return additional results for all four of its
subclasses (and their subclasses etc.). Or vice versa, searching for “Land Real Estate”, one of “Land
Divisions”’s subclasses, you could get results tagged with “Land Real Estate” or one of its subclasses,
but you could also get suggestions for results in the other “Land Divisions” subclasses, or information
like how large a share of “Land Divisions” these “Land Real Estate” results are. Finally, you could com‑
pare data from different contexts even if the specific tags, say “Jews” and “Indigenous Peoples”, are
different, based on amore general superclass like “Marginalized Groups”…

Also, by developing a classification scheme, a research project or researcher may hope to discipline
themselves or other users in the use of synonyms and different grammatical forms of the terms. The
idea is that it functions as a restricted vocabulary and you avoid one annotator marking something
as “Craft and Trade” and the next one marking something comparable as “Crafts and Trades” (plural
forms), lest youmiss half of the entries when you search for either of the terms.

In a monohierarchical taxonomy such as this, there must not be an overlap between the classes. It
does require a good understanding of the criteria of the classes and an explication of the relationship
between the concepts. E.g. in our classification we have “Social Order and Religion” and a subclass
are “Marginal Groups”. These groups form a specific group within (or rather: outside) the society and
as such the relation to ‘Social Order’ is specified. (Note, however, that a single ordinance or piece of
data may be classified as related to several concepts. In this sense, there may be overlap, just not in
the concepts and classes themselves.)

Surely, such classification schemes are always to a certain extent artificial, they force thematerial into
preconceived “drawers” or “boxes”, and they always have their blind spots andpitfalls. Thus, wewant
to highlight some principles and key takeaways to consider in building your own scheme.

II. Building Your Own Classification Scheme

Here are two pieces of advice that we recommend you keep in mind in all that follows after:

1. Keep your own research question in mind andmake sure the scheme corresponds to it
2. Consider the relevant usage scenarios: is the scheme meant to support aggregating and quan‑

titative analyses, or is it about search suggestions to lay people coming across your website.

10

Different scenarios call for different types of schemes, and maybe a taxonomy is not even the
best choice

Obviously, there is a tension between, on the one hand, the scheme being a “living” thing that you
keep developing and expanding, and, on the other hand, the need to have a settled vocabulary to
refer to unambiguously. Thus we (as authors) applaud the possibility of adding information to clas‑
sification schemes (progressive understanding one might call it), however, we also consider it good
practice to leave the original structure intact andmake changes only in new versions or releases.

Steps and considerations (a)

In general terms, the process of building a classification scheme can be summarized as collecting
terms, normalizing and consolidating terms and balancing the scheme. (For a somewhat different pre‑
sentation of the steps, recommendations that overlap a lot with the following, and a lot more litera‑
ture, see also SEMIC 2009, in particular chapter 4.)

Where to start with finding concepts to build a classification scheme for historical material:

• Look within historical books and their indices
• Check historical classifications (e.g. archival schemes) to organise and classify information
• Search within research literature for ‘standard’ vocabulary within your field to name the con‑
cepts

• closely read a sample of your data to form an intuitive list of relevant concepts

Autiero et al. 2023 had recourse to a terminological repertory from 2007 (and to other sources like
museum catalogues, repertories and databases), and the Policeyordnungen project collected terms
from indices of 19th‑century compilations of ordinances and from archival finding aids. Nijman and
Pepping 2023 indicate that they plan to turn (among other sources) to a glossary from 2000. They
also point out that it is important to be able to take a critical distance towards the language (they are
planning a SKOS vocabulary for records of the Dutch East India Company and are confronted with
biased and derogatory colonial language in the historical sources). Ernst et al. 2023 even describe
and compare three different approaches for collecting terms (“deductive”, “pragmatic‑explorative”,
and “inductive‑computational”).

When you start listing the terms, consider applying some normalisation and critical review of termi‑
nology:

• Lemmatisation (singular/plural, orthography, etc.)
• The composition or decomposition of words
• Oftenchoosingmodern terminologyhelpsavoidingchallengeswith spelling‑changesover time;
but depending on your field youmay need to defend this choice

11

https://publica.fraunhofer.de/handle/publica/294684
https://doi.org/10.5334/johd.111
https://doi.org/10.5281/zenodo.7973694
https://doi.org/10.5281/zenodo.7973694
https://www.digitalhumanities.org/dhq/vol/17/3/000708/000708.html

• On the other hand, historic terminology often carries biases and misrepresentations that need
to be addressed

Besides the more or less trivial orthographic and grammatical normalization, some more delicate
questions are likely to surface: Nijman and Pepping 2023 point out that it is important to be able
to take a critical distance towards the language. In their case, a SKOS vocabulary for records of the
Dutch East India Company is being developed and they are confronted with derogatory and discrimi‑
natory colonial language in the historical sources. Ernst et al. 2023 are concerned with court records
from the Nazi regime and discuss these problems in more depth.

Obviously, therewill be a hermeneutic step of combining the categories in groups of various levels. In
terms of the structure of your scheme, after building sub‑ and supergroups, you will need to balance
your scheme and see that concepts at the same level of the hierarchy have a roughly analogous level
of abstraction. E.g. Having ‘economic affairs’ on the same level as ‘pavement’ is not balanced as these
terms are operating on different levels of abstraction. Adding ‘infrastructure’ as a super‑class contain‑
ing ‘pavement’ as a subcategory could solve the problem, as it balances themout, even though itmay
be introduced somewhat artificially. Be aware of super‑concepts that could in effect be collections of
multiple concepts rather than concepts in themselves: those youwould need to break down intomul‑
tiple categories or replace themwith a concept that actually does reflect their common denominator
to ensure clarity of your structure.

One other consideration that has proven to us to be valuable is keeping track of what kind of objects
youareaiming to classify: Ideally all the terms in a schemeshould classify the same“ontological” kind
of thing: if you want to classify sectors of economic activity on the one hand, and physical objects on
the other, perhaps you should simply create two separate schemes. This is not strictly necessary,
however, as you might also think of a distinction between “processes” (with a sub‑class “social prac‑
tices”, of which “economic activity” in turn could be a sub‑class with different sectors) and “physical
objects” as being a distinction of sub‑classes of a commonhigher‑level class of “things” as such. Then
the scheme as a whole would again classify objects of the same kind, namely “things”. But anyway, it
is good to always be aware of what kind of object you are currently thinking of…

At this stage, the software that you are using to collect and arrange the classes of your classification
scheme does not really matter. You can use a word processor (taking advantage of different levels
of headings and perhaps automatic numbering to reflect different levels of the classes hierarchy), or
youmay use amindmapping or other diagramming software, or you can even use a spreadsheet soft‑
ware with one concept per row and columns for concept identifier, preferred and alternative labels,
optionally “parent” conept, definition etc. Maybe youwant to be able to collapse/expand parts of the
hierarchy, but many word processors and mindmapping tools are capable of doing so, and spread‑
sheet tools usually can filter rows as well.

12

https://doi.org/10.5281/zenodo.7973694
https://www.digitalhumanities.org/dhq/vol/17/3/000708/000708.html

Steps and considerations (b)

If your taxonomy aims at a certain scholarly community interested in the domain, and if you envision
involving other members of the community or other stakeholders into the process of developing it,
there are also issues of a different kind to consider:

• Are you going to collaborate, and with whom? Are these people knowledgeable enough to con‑
tribute and correct, or are theymere users? – How can you involve them in defining the classifi‑
cation scheme?

• How often and how far into the project can and will you revise your classification scheme?
• Can you document when andwhy choices weremade, so that others can replicate your train of
thought and can follow your classification scheme within a (slightly) different context?

Goulis 2021 and Edmond et al. 2023 discuss in detail the various facets and challenges of scenarios
in which teams or communities aim to develop controlled vocabularies across disciplinary and insti‑
tutional boundaries. While we, the authors, agree about the importance of organizational and social
arrangements, we would like to add that methods and workflows also stand and fall with the tooling
available and with the way the tools accommodate both users and their workflows. Thus, in the later
chapters, we will discuss a software tool and a platform which greatly facilitate transparent collabo‑
rative editing of resources such as a taxonomy. (See Durost et al. 2021 and Almeida et al. 2021b who
begin to cover this aspect.)

What is SKOS and how to encode your scheme?

In the previous chapter, you have encountered various examples of controlled vocabularies. Their
type tells you something about what type of data they contain and whether its concrete/abstract or
flat/complex. By now you should develop a first idea for a mental model or “conceptual scheme” of
your classification scheme. You should prepare a diagram or document where all the concepts and
their hierarchical relations are being collected. In order to express such structures in a way that can
be parsed more easily by machines, we recommend and will use the Simple Knowledge Organisation
System (SKOS). It is a W3C standard recommendation, to express stuctures and contents of concept
schemes.

As the W3C SKOS Primer explains, the purpose of this standard is just what this tutorial is about: de‑
ploying a classification scheme to facilitate its reuse.

The aim of SKOS is not to replace original conceptual vocabularies in their initial context of use,
but to allow them to be ported to a shared space, based on a simplified model, enabling wider
re‑use and better interoperability. (Introduction)

13

https://doi.org/10.34619/pgtp-upne
http://www.digitalhumanities.org/dhq/vol/17/3/000701/000701.html
https://doi.org/10.34619/pgtp-upne
https://doi.org/10.34619/pgtp-upne
https://en.wikipedia.org/wiki/Simple_Knowledge_Organization_System
https://en.wikipedia.org/wiki/Simple_Knowledge_Organization_System
https://www.w3.org/
https://www.w3.org/TR/skos-primer/#secintro

Beyond identifiers and labels, SKOS supports documentary information, hierarchical relations, a
rather unspecific ‘related‑to’‑relation and mapping relations (for connecting to other schemes),
making it well suited to accommodate term lists and taxonomies. For thesauri and ontologies, more
powerful standards are better suited, but since we are dealing with a taxonomy, SKOS is the perfect
choice for us: The labels and documentary notes allow for synonyms and translations in various
languages, examples (to provide a context), and definitions (explaining the terms). The hierarchical
relations are expressed as concepts relating to broader (part of a higher level‑category) and narrower
(specification of the term) concepts.

Aiming to open up knowledge organisation schemes for wide re‑use in the semantic web, SKOS itself
is based on the Resource Description Framework (RDF) as the data model for any and all information
on the semantic web. The RDF model expresses all information in the form of so‑called “triples” of
subject, predicate and object, with Unique/Uniform Resource Identifiers (URIs) being used as globally
unambiguous identifiers for each of the three elements:

Image 3. Visualisation of a triple.

More on RDF and the Turtle (ttl)‑syntax that we’re using for serializing it can be found in the lesson of
the Programming Historian dedicated to Linked Data.

Your concept is identified by an URI and you can link a number of labels in different languages (mod‑
ern, dialect, slang or other language) to it, designating one label per language as the ‘preferred’ one
(prefLabel).

14

https://en.wikipedia.org/wiki/Resource_Description_Framework
https://en.wikipedia.org/wiki/Uniform_Resource_Identifier
https://en.wikipedia.org/wiki/Turtle_(syntax)
https://programminghistorian.org/en/lessons/intro-to-linked-data

Image 4. How does a .ttl‑file look like?
Source: https://w3id.org/rhonda/polmat/scheme.json

In detail:

1 @prefix : <https://w3id.org/rhonda/polmat/> . // In the
following, an identifier beginning with ':' should be expanded to '
https://w3id.org/rhonda/polmat/' etc.

2 @prefix skos: <http://www.w3.org/2004/02/skos/core#> . // In the
following, an identifier beginning with 'skos:' should be expanded
to 'http://www.w3.org/2004/02/skos/core#' etc.

3
4 :n01.1so.3 a skos:Concept ; // Here comes

information about the concept "https://w3id.org/rhonda/polmat/n01.1
so.3"

5 skos:inScheme :scheme ; // it is part
of the concept scheme "https://w3id.org/rhonda/polmat/scheme"

6 skos:prefLabel "1.3 Marginal Groups"@en , // it has
preferred labels in english, dutch and german languages...

7 "1.3 Marginale groepen"@nl ,
8 "1.3 Randgruppen"@de ;
9 skos:broader :n01.1so ; // this is its

"parent" concept
10 skos:narrower :n01.1so.3.a , // these are

its three "child" concepts
11 :n01.1so.3.b ,
12 :n01.1so.3.c .

Image 5. Detail of a .ttl‑file.
Source: https://w3id.org/rhonda/polmat/scheme.json

15

https://w3id.org/rhonda/polmat/scheme.json
https://w3id.org/rhonda/polmat/scheme.json

If you have a large classification scheme, manually creating such a SKOS file can be a tedious activity.
Depending on how you have created your conceptual scheme in the preceding steps, there may be
ways of transforming it with search and replace expressions (or a tool such as sparna’s excel‑to‑skos
converter). However, it is good to understand the elements, tomanipulate or correct the information.

The most important ones are:

• skos:broader refers to the URI of the more abstract concept.
• skos:narrower is/are the more concrete concept(s).
• skos:prefLabel provides the words that you prefer to use to talk about the concept; the
additional@en (English),@nl (Nederlands) or@de (Deutsch) are indications inwhich language
the words are expressed.

• you might want to add skos:scopeNotewith some explanation or skos:definition or
skos:example in order to give a clearer picture of the concept; these fields can be given in
several languages again.

For more information about other predicates (and entity types), see again the SKOS Primer. The
sparna SKOS playground offers ways of testing and visualizing your SKOS file.

III. Introduction to Basic git Commands and GitHub Features

Having an overview of the files you are working on is crucial when working with multiple people on
a project or when you need to return to an old project years later. Tracking changes made by con‑
tributors and preventing conflicting changes is especially useful for actively used documents with
collaborative revisions and rewritings. Finally, when other projects want to reuse information it can
be helpful to have some record of previous choices and developments of a project.

In this chapter, you will learn to use git and GitHub as tools for version control. If you are already
familiar with these (and terms like “push”, “staging area”, “fork”, “pull request” do not even raise an
eyebrow), you are invited to skip this chapter and read on in chapter IV.

16

https://skos-play.sparna.fr/play/convert
https://skos-play.sparna.fr/play/convert
https://www.w3.org/TR/skos-primer
https://skos-play.sparna.fr/play/home
https://en.wikipedia.org/wiki/Git
https://en.wikipedia.org/wiki/GitHub

Image 6. Versionmanagement Old Style?
Source: https://imgs.xkcd.com/comics/documents_2x.png

Git is software originally created by ‘Mr. Linux’ Linus Torvalds in 2005. It was originally intended to
managed the collaborative development of the operating system Linux. GitHub is a webservice that
runs git and offers to host git repositories. It was acquired by Microsoft in 2018 and is by far the most
popular free public repository for version‑tracked files such as software code. Both git andGitHub are
free to use.

To keep track of changes in files in a folder on your computer, you can use git. It acts as a local reposi‑
tory (archive). GitHub on the other hand, is a remote webservice that acts as a remote repository. You
can think of the remote repository as a shared central archive, your local repository is your personal
copy of it. This also means that you should consider the remote repository as having the “authori‑

17

https://imgs.xkcd.com/comics/documents_2x.png
https://en.wikipedia.org/wiki/Linus_Torvalds

tative” version. This is because nobody knows anything about anything on your local computer, all
your local stuff is private. Local changes are unknown and invisible to your collaborators until they
are shared through the remote repository.

In this chapter you will first learn how to create the remote repository on GitHub, then you will learn
how to clone (copy) this to your local machine. Then we will show you how to update the remote
repository with changes youmade locally, so you can share your edits with others.

Setting up a GitHub repository

Image 7. Screenshot of the Repositories Tab in GitHub, with an arrow on the right to indicate the “New”
Button where you can create a new repository.

To create a new GitHub Repository, you log in to your GitHub account and visit the tab “Repositories”
(orange underlined). Here you can find a green button “New” (indicated with the arrow in the image)
which you will need to click.

18

Image 8. Create a new repository.

When you create a new repository, you are asked to provide a name and a brief description. Addition‑
ally, you are choosing whether it is public or private. The contents of a public repositoy is visible to
anyboy, the contents of a private repository is only visible to people whom you grant access. (How to
grant access we will treat later.)

When setting up a new repository you are asked if you want to add some standard resources. One
of these is the README.md file. This file is used for a brief description of the project. We sincerely
recomend adding a README.md and use it to describe the aims, contents, and intended use of your
project and files. The contents of the README file will be shown nicely readable on the front page of

19

your repository. It is an excellent way of introducing visitors to your project and goals. (Here and here
are some hints about writing good READMEs.)

You can also choose to add a .gitignore file. This file is used to lists the files that you do not want
to be integrated in the remote repository. For instance, suppose that you have a file in your local
repository called raw-notes.txt and you do not want that to be integrated and shared through
the repository, you would add a line saying simply raw-notes.txt to the .gitignore file. (Adding
.txt to the file would cause all text files to be ignored, adding my_folder/.jpg will ignore
all JPEG files in the folder named “my_folder” on your local repository.) Having such a possiblity to
ignore files comes in very handy, so by default add it to your setup.

You will also be asked to chose a license fitting to your situation. The license determines how others
can use and refer to your repository (and thus, later, your classification scheme).

After you have the choices that fit your needs, you click on “create repository” and you are redirected
to your new repository.

The remote repository isnow inexistenceandwill havea little content in it. If you followedourdefaults
you would find the README.md, LICENSE, and .gitignore files listed.

Now we need to setup a local repository that will act as a “mirror” of the remote repository through
git. To do this, find the HTTPS address for your repository. You will find this under the button “Code”
(green arrow in the image):

Image 9. Arrow indicating the button ‘code’ within the new repository.

20

https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/about-readmes
https://www.yegor256.com/2019/04/23/elegant-readme.html
https://git-scm.com/docs/gitignore
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/licensing-a-repository

If you click on the button a panel will open where you will find the HTTPS weblink to your repository.
Copy this link.

Image 10. Copy the HTTPS‑link to your repository.

Setting up the local repository

Git offers various Graphical User Interfaces (GUIs). There are also code and text editors that integrate
GUIs to use git for your resources (e.g. Visual Studio Code, Atom or Sublime Text). However, for the
purpose of this tutorial you will work with git on the command line because you can use these com‑
mands exactly the same on all operating systems.

If you have not worked with the command line before, you may want to study a quick introduction
to it. There are many tutorials for the command line around. You will find the Programming Histo‑
rian’s introduction to the command line here. Alternatively, look at one for the Mac here, and one for
Windows here.

Access your command line and navigate to the folder where you want your local repository to be cre‑
ated as a sub‑folder. On the command line now type git clone, type a single space, and add the
HTTPS link from your GitHub repository. So, your command should look something like:

1 git clone https://github.com/yourname/yourproject

Now you press enter. Git will create a folder locally with all the content cloned from the remote repos‑
itory. Following the example that folder would be named “yourproject”, in your real context it will
have exactly the same name as the remote repository’s name.

21

https://code.visualstudio.com/
https://atom.io
https://www.sublimetext.com/
https://programminghistorian.org/en/lessons/intro-to-bash
https://pittsburgh-neh-institute.github.io/Institute-Materials-2017/schedule/week_1/command_1_mac.html
https://pittsburgh-neh-institute.github.io/Institute-Materials-2017/schedule/week_1/command_1_windows.html

Now change to this new folder as most of the git commands rely on the current folder being a git
repository:

1 cd yourproject

Communicating between repositories

Obvisouly you want to communicate between your remote repository and the local repositories. The
two most important commands that you need when you are updating either your local or remote
repository are called push and pull. You push a new version of some resource from your local
repository to a remote repository, using:

1 git push

And you pull a new version from a remote repository to your local repository, using:

1 git pull

22

Image 11. Image indicating the GitHub remote repository and arrows pointing to and from local reposi‑
tory. The arrows are marked with the commands git push and git pull.
Source: J.J. van Zundert

However, before actually exchanging data and resources using push and pull, we need to under‑
stand if there are any changes either locally or remote. So, we need some ways to talk to both reposi‑
tories through git about these potential changes. The most often used commands for this are:

• fetch downloads a “ledger” of latest changes in the remote repository.
• status indicates whether there exists any differences between local and remote repository.
• add adds a new file to the index of tracked files.
• commit pushes changes to your local repository.

23

Your first push to a repository

Let us see these commands in action. Of course, to do so, we do need an actual change first. So open
up you favorite editor andmake some little change to the README.md file that is tracked in your local
directory since you used the clone command. When done, be sure to save your changes.1

You are now ready to commit your changes to the remote repository:

• Access your command line.
• Navigate to the project folder, i.e. the folder where your README.md file is stored.
• Type git status to check the state of your repository.

Git will now inform you that indeed something has changed. This will look something like the follow‑
ing.

Image 12. Git status message.

Git is thus saying that the README.md file has changes but that these changes have not been com‑
mitted to the repository. Technically, the process of getting stuff into the repository has several steps:
you edit your files in what is called your “working copy”; then, of all the files you have edited, you add
those that you are ready to commit to a “staging area”; and then you commit everything you have
in this staging area to the local version‑tracking “repository”, adding an explanatory note. This way,
while you may be editing in many files at the same time, you have the opportunity to compile just
a selection of related changes for your commit and are not required to commit all or nothing. Long
story short, next you use the git add command to add changes to the repository. You can use git
add [filename] where you replace “[filename]” with a specific file. In our example you would

use:

1 git add README.md

Instead of a specific file you can also add all changes found to the repository indiscriminately, like so:

1 git add .

1Towork reliablywith text anddata resourcesuse straight forwardplain text editors suchasVisual StudioCode,NotePad++,
Sublime Text, Brackets etc. Do not use presentation oriented programs such as MSWord or OpenOffice or the like, that
will contaminate your sources with unwanted additional presentation code or information.

24

https://www.techradar.com/best/best-text-editors
https://www.techradar.com/best/best-text-editors

People usually just use this last command, as it prevents a lot of repetitious typing. After you have
done this, check the state of your repository again, using git status. The output will be slightly
different:

Image 13. Git updated status message.

Git has now integrated all the changeswemade in the local repository. We are ready to commit to our
changes, which is the next step, using the command:

1 git commit -m [message]

In the place of messagewe add a reason for the changes or a short description of these. Do indicate
what you changed, however comprehensively. If for some reason you ever need to revert changes
this description will be very helpful in locating the version that you want to restore. In our example
we could say:

1 git commit -m 'Small change for instruction purposes.'

After executing the command the change has been solidly locked into our local repository. However,
now we still need to upload it to the central or remote repository. For this we utilize the git push
command:

1 git push origin main

By default origin is the label that indicates the original remote repository we cloned from. It is
possible to push to several different repositories, using different labels for various URLs where repos‑
itories are located. This advanced use of git is not covered here, however. Neither do we cover here
the creation of different branches. Branches are a way of developing different variants of the same
code. A variant (branch) is sublty different froma version. Youmight for instance have aWindows and
aMac branch of the same resource in one repository. Within each branch youmay again have various
versions. By default there is only one branch in a repository, which is called main. This is the second
argument for our git push command. For our purposes it will be wholly sufficient to use only one
origin and one branch, and therefore we will always use git push origin main.

25

Updating from a repository

It may be that you have been away for a while, and you have not tended to your collaborative project.
However, it may be that in the meantime colleagues have added or changed resources. So, suppose
you return after a few months, what do you do first? Indeed, you update your local repository with
any changes committed (and pushed) by others to the remote repository. This will ensure that you
are in sync and ready to work on the latest versions of all materials.

When you recommencing work on your local repository, it is thus good practice to start with git
fetch and git pull to ensure you are working on the latest version. Update often and certainly
any time you start working again. Also, for instance, when you have just been away from your
keyboard for a coffee break. This is best way to prevent the headaches that come with a versioning
hell. It may look a bit tedious at first, but youwill come to love it after only a little while. Keep yourself
happy and out of versioning mysery: use git fetch and git pull a lot.

To update your local repository, follow these steps:

• Check the status of your local repo: git status
• If your local repository does not report any changes, get the latest info from the remote reposi‑
tory: git fetch

• Check again the status of your local repo: git status
• If nothing has changed simply proceed to work.
• If there are changes reported, retrieve them by using git pull.

Also try not to leave changes in your local working copy or repository lying around for very long with‑
out committing/pushing them. In other words, commit and push often, certainly before taking a
longer break from working on the project. This helps to avoid conflicting changes made by different
collaborators.

Disciplining yourself: creating the routine

When you follow the routines described above you should soon be comfortable with retrieving
changes from a remote repository and committing newmaterials to your local and remote repository.
The more you git fetch, git pull, git add ., git commit -m, git push origin
main the more it will become second nature and the more you will be able to avoid version

conflicts.

Usuallyworkingwith git andkeeping versions in sync shouldbeeasy enough. But sometimes youmay
receive puzzlingmessages or errors. Suppose, for instance, that in the updating process just above for
some reason the local repository would have reported some change. In that case youwill not be able
to update the local repository from the remote repository. Whatever the reason there was a change

26

(maybe you forgot to git push the last time you stopped working) and git will actively resist you
doing any pull or push that would hurt the integrity of the remote authoritative version or that would
overwrite any local changes.

In most cases it will be enough to carefully read what git reports, even if these messages may be a
little hard to read. Sometimes git will say that it can “auto merge” local and remote changes. If this
happens, just follow instructions and you will be fine.

If git really does not want to copy changes, you still have the option to overwrite your local repository
with the remote data. Keep in mind however, that all possible changes on your local repository will
be lost and the remote data will prevail. If you know for sure that you do not need the local changes,
do:

1 git reset --hard origin/main

There is also a way to forcibly push your local state to the authoritative source on the remote reposi‑
tory. This is however a nuclear option, really. You will have to be utterly sure and convinced and able
to prove that your local version is better than anything else there is in the remote repository. This is
almost never the case. In any case, after you have written a 500 words essay on why you are doing
this, youmay overwrite the remote repository by using:

1 git push -f origin main

But seriously, consider all other options first.

27

Image 14. Summary of the essential Git commands and what they do.
Source: J.J. van Zundert

Collaborating with others on your repository

Collaborating with others on the same files in your own repository is as easy as allowing sufficient
access to the remote repository forotherusers. For this, your collaboratorsneedanaccountonGitHub
(if your repository is stored there), and you need to grant them access via the settings page on GitHub
(see image 15). Git will take care that no one is accidentally removing or overriding changes by any
collaborators unchecked. Your collaboratorswill be able to use the repository in exactly the sameway
as you are interacting with it (as depicted in image 16.).

28

Image 15. GitHub: inviting collaborators.

29

Image 16. Git: Multiple users working on the same repository.
Source: J.J. van Zundert

IV. Deploying your Classification Scheme

After having worked through the what and why of classification schemes, and after also having com‑
pleted thehowofbuildingandcollaborativelydeveloping yourownone, you shouldnowhavea classi‑
fication scheme of your own, encoded in turtle language, in a git‑controlled repository. The next step
will be to deploy it, whichmeanspublishing your classification schemeonline so that you, your collab‑
orators, and perhaps others thatmight be interested can consult and use it as a controlled vocabulary
in a linked data setting. As we said above, authority data is a controlled set of records, covered by a
consensusof a communityof researchers, that is available inan infrastructureofferingcertain services
and it is this latter part that we will be addressing now.

30

Let us talk about the “services” that we aim for. We want to:

• Offer permanent URIs for your scheme and for each of its concepts, so other projects can refer
to them unequivocally,

• Make these URIs resolvable, i.e. behave like URLs that provide both human readers and ma‑
chines with more information about the resources (in the correct file format), i.e.

• Browse and search the terms and the hierarchy of your scheme in a web browser,
• Integrate the scheme with annotation and data cleaning tools.

Interestingly, for some of these services, you can rely on the internet infrastructure that you are al‑
ready using anyway to take care of collaborative development: The GitHub platform offers, for free,
possibilties to create a user‑friendly web page for your project and stable access to your data. And
it also supports automatic actions to be executed whenever your data or code gets updated in the
remote (i.e. GitHub‑hosted) repository.

In this chapter, we will see how we can use the skohub‑vocabs software to create the necessary ad‑
ditional resources based on our .ttl file. We can use “GitHub pages” to publish these resources. And
we can use “GitHub actions” to do this automaticallywith every update of our vocabulary. Finally, we
will use the w3id.org web service to mint permanent URLs for all our resources.

After these publication steps, we will take it one notch further in the final chapter and discuss how to
integrate the scheme with example tools of a data cleaning and an annotation workflow.

Building your files automatically with GitHub Actions and the skohub‑vocabs Docker image

Beforewediscuss how to run tasks automatically on theGitHubplatform,we should seewhat the task
that we want to be executed actually is. Up to now, we only have a single turtle file containing your
whole SKOS scheme, but the services outlined above expect other file formats andother granularities.
Wewouldneeddata toofferwhen theuser (oranautomatic client) requests informationabouta single
concept, too. Andwewouldneedall thisdata ina formatnicely readable forperhapsnot so technically
savvy human users whowant to learn about our vocabulary using aweb browser (i.e. not in the turtle
format described above), and in at least one of the RDF serializations (like turtle, but maybe other
formats are evenmore popular among automatic clients, respectively among the developers of such
clients).

Enter skohub‑vocabs, a so‑called static site generator. If you run this software, it takes all turtle files in
its./data folder and creates a./public folder with html files and subfolder structure. If you copy
this folder to a webserver, you have a full‑fledged web presence for your classification scheme: In ad‑
dition to creating individual webpages for each concept (in the case of our policey ordinances subject
matters, this meansmore than 1,800 individual webpages) and an index file to get information about

31

https://pages.github.com/
https://github.com/features/actions
https://w3id.org/
https://github.com/skohub-io/skohub-vocabs
https://github.com/rhonda-org/vocabs-polmat
https://github.com/rhonda-org/vocabs-polmat

the scheme as a whole, it also creates such files in multiple formats that automated clients might re‑
quest (JSON, JSON‑LD). On the webpages, you can switch languages if you have added multilingual
information to your turtle file; you also have a search form, and a tree view of your categories:

Image 17. Screenshot of concept on a skohub‑built site.
Source: https://w3id.org/rhonda/polmat/n01.2pso.1.a.de.html

The developers of skohub‑vocabs also suggest an interesting way of using the software: Instead of
downloading, installing, configuring and executing the skohub‑vocabs software, an alternative, quite
clever way of running the software on your .ttl file is by making use of a docker image, a snapshot of
a virtual environment in which the software and all its dependencies are already installed and pre‑
configured and which is capable of executing a command such as building all those files we need.
Thankfully, the skohub people maintain such a docker image of skohub‑vocabs available on docker
hub, an online collection of such images.

Evenmore clever is running the docker image not on our local computer, but on the GitHub platform:
With GitHub actions, you can specify processes that are triggered by events in your repository. Origi‑
nally, this was developed to automatically run validation tests on software code upon changes, and ‑
if the tests are successful ‑, deploy the new code to where it would be executed. However, the actions
are immensely flexible and powerful. Thus, whenever code is pushed to our repository, we can have
the platform launch a virtualisation environment (downloaded from a public collection of docker im‑
ages), feed it with the files in our repository, run the processing, and push the resulting files to some
specific branch of our repository. That saves us the hassle of bringing the image and our .ttl file to‑

32

https://w3id.org/rhonda/polmat/n01.2pso.1.a.de.html
https://github.com/skohub-io/skohub-docker-vocabs
https://en.wikipedia.org/wiki/Docker_(software)
https://hub.docker.com/r/skohub/skohub-vocabs-docker
https://github.com/features/actions

gether, and of collecting and uploading the resulting files after processing ‑ the GitHub platform does
all this, we just have to configure our “action”:

Assuming you are working in a local copy of the main branch of your project, this is how you do it:

• Make sure your .ttl file is in a subfolder of the main folder called data
• Create a subfolder of the main folder called .github (note the leading dot), and in it a sub‑
folder called workflows, and in this folder, create a file called main.ymlwith this content:

.github/workflows/main.yml:

33

1 name: Build /public and deploy to gh-pages with docker container
2
3 on:
4 push:
5 branches:
6 - master
7 - main
8 workflow_dispatch:
9 inputs:

10 logLevel:
11 description: 'Log level'
12 required: true
13 default: 'warning'
14 tags:
15 description: 'Test scenario tags'
16
17 jobs:
18 build:
19 runs-on: ubuntu-latest
20 steps:
21 - name: Checkout
22 uses: actions/checkout@v2
23 with:
24 persist-credentials: false
25
26 - name: remove public and data-dir if already exists
27 run: rm -rf public data
28
29 - run: mkdir public
30
31 - run: mkdir data
32
33 - run: git clone https://github.com/skohub-io/skohub-docker-

vocabs.git data/
34
35 - name: make .env.production file
36
37 run: echo "BASEURL=/skohub-docker-vocabs" > .env.production
38
39 - name: build public dir with docker image
40 run: docker run -v $(pwd)/public:/app/public -v $(pwd)/data:/

app/data -v $(pwd)/.env.production:/app/.env.production
skohub/skohub-vocabs-docker:latest

41
42 - name: Deploy
43 uses: peaceiris/actions-gh-pages@v3
44 with:
45 github_token: ${{ secrets.GITHUB_TOKEN }}
46 publish_dir: ./public

34

(here is the documentation for the syntax of GitHub’s workflow files.)

• change line 33 to have your full repository URL instead of https://github.com/skohub
-io/skohub-docker-vocabs.git

• change line 37 to have your repository name instead of skohub-docker-vocabs
• commit your changes and push them to the platform

This will automatically run the whole build process on every push to the main branch and put the
resulting files (inside the docker container, they are in the folder public) in a branch of your reposi‑
tory called “gh‑pages”. Depending on the size of your classification scheme, this may well take some
minutes. If you go to the “Actions tab” in your repository’s web site, you can watch the progress and
check if everything was successful.

Image 18. Screenshot of GitHub’s “Action” tab.

What is still missing now (and what eventually may have caused your first build to run into an error)
is that we have not yet defined what this “gh‑pages” branch is and howwe can use it to host our html
files as a beautiful website (instead of a repository of code files).

Publishing your classification schemewith GitHub Pages

“GitHub pages” is a feature of the GitHub platform where you use it as a web server rather than a
git repository. Instead of building a UI with notifications, tabs to access and manage issues, actions
and repository settings around the listing of files (and, in viewing a single file, displaying the actual

35

https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions
https://pages.github.com/

file content, with line numbers, information about change history etc.), the platform just delivers the
raw file as‑is. Obviously this only makes sense if the file has a format that a browser can understand,
but if so, you may even skip an expensive web space provider and just use GitHub. If you have come
across webpages the URL of which begins like https://foo-bar.github.io/, that’s how they
are hosted.

Above, we had our GitHub action populate the root folder of the gh-pages branch of our repository
and so we just need to tell GitHub to use this folder as base folder for hosting our website.

Image 19. GitHub‑pages settings.

We do this by navigating to the repository “Settings” tab (box number 1 in the image), then selecting
the “Pages” item in the list on the left (box 2) and selecting the branch “gh‑pages” and the “/ (root)”
folder (box 3). (If there is nobranch “gh‑pages” available you can create it if you click on thedropdown
button “main” on your main repository page, entering “gh‑pages” in the “Find or create a branch…”
slot and then clicking on “Create branch: gh‑pages from main”) Click on the “Save” button and wait
someminutes.

That’s it. You should be able to access your classification scheme at https://your-github-
username.github.io/your-repository-name/ (or what is reported in box 4). If not, then
maybe the build has not been triggered and you couldmake some small change to your turtle file and
push it to the platform again (to trigger a re‑build of thewebpages). Ormaybe it just takes a bit longer
to build the pages, then just wait a bit longer.

36

Note that while the preceding sections have discussed the whole workflow based on the offerings of
GitHub, there are alternative platforms youmight prefer. GitHubplatformprovides all the features de‑
scribed above for free (for up to 2,000minutes of processing time per month spent on executing your
actions), but it’s a private company owned by Microsoft. Alternative platforms, like GitLab, BitBucket
or others, may offer a different set of advantages and drawbacks, but in terms of git compatibility,
“actions”, and “pages”, they usually have quite comparable features.

Creating Persistent Identifiers with w3id.org

The following is also described in otherweb tutorials by the skohub teamand an earlier one by Daniel
Garijo.

In academic discourse, addressing resources – literature, but also datasets and vocabularies – by
persistent identifiers is considered good practice. (Think of articles cited by DOI.) Such identifiers
facilitate referring unambiguously to the same resource even when the infrastructure serving it
changes over time. Since we are dealing with resources on the (Semantic) Web, it is quite natural to
use URIs/URLs as such identifiers, hence Persistent Uniform Resource Locators (PURLs) are adequate
persistent identifiers for our resources.2 Consider that, while your vocabulary and your concepts
may have parts of their URI that depend on the underlying infrastructure (like the github.io/
in the hostname), you would like its users to refer to it via URIs that avoid such components. Then
you set up an infrastructure that offers such “neutral” URIs and forwards requests to your actual
(github, in this case) URL, allowing you to reconfigure the redirection when necessary. In this way,
if at some point in the future you migrate from GitHub pages (with that https://*.github.io
URI) to another platform, say Gitlab (giving you a https://*.gitlab.io URI), you just have to
change the redirections, but all the urls “out there in the wild” remain valid because the platform is
“masked”. Of course, it requires effort of setting up and eventually updating the redirection, but we
suggest it is worth the effort.

Once more, what is needed is an infrastructure and social promises of maintenance (by the infras‑
tructure provider and by the redirectionmaintainer). Two popular platformswhere you canmaintain
PURLs for your own resources are w3id and purl.org. The latter is managed by the Internet Archive
and has aweb user interface formaintaining redirections, but it requires an account with the Internet
Archive. The former is more community‑driven insofar as it is managed by the W3C Permanent Iden‑
tifier Community Group and it offers more immediate access to the redirection server setup. So for
this tutorial, we will set up redirections with w3id.

2Sometimes the concept of permalinks ismentioned in this context aswell, and the difference between PURLs and Perma‑
links is not a categorical one, but rather “about domain name and time scale: PURL uses an independent dedicated do‑
main name, and is intended to last for decades; permalinks usually do not change the URL’s domain, and are intended
for use on timescales of years.”(Wikipedia). With this tutorial, you are going for a PURL.

37

https://about.gitlab.com/
https://bitbucket.org/product/
https://github.com/skohub-io/swib20-workshop/blob/main/resources/publish-vocab.md#step-6-set-up-redirect-for-persistent-identifiers
https://linkingresearch.wordpress.com/2016/01/17/permanent-identifiers-and-vocabulary-publication-purl-org-and-w3id/
https://linkingresearch.wordpress.com/2016/01/17/permanent-identifiers-and-vocabulary-publication-purl-org-and-w3id/
https://en.wikipedia.org/wiki/Persistent_identifier
https://en.wikipedia.org/wiki/Digital_Object_Identifier
https://en.wikipedia.org/wiki/Persistent_uniform_resource_locator
https://w3id.org
https://purl.org/
https://archive.org/
https://www.w3.org/community/perma-id/
https://www.w3.org/community/perma-id/
https://en.wikipedia.org/wiki/Permalink
https://en.wikipedia.org/wiki/Persistent_uniform_resource_locator#Comparing_with_permalink

As has been mentioned, w3id.org is just a redirection platform the configuration (or “routing”) of
which is configured in a collection of snippets of configuration files for an Apache webserver. The
collection is maintained as a github project and maintained in subfolders, so that for a redirection of
https//w3id.org/myname/ to https://my.site.com/, you would have a folder myname
in the w3id github project. In this folder there would be a .htaccess file, containing, most impor‑
tantly, one or more RewriteRule instructions defining the redirects. For our vocabulary of police
ordinances subject matters, the full file reads like this:

1 Options +FollowSymLinks
2 RewriteEngine on
3 RewriteRule ^polmat/(.*) https://rhonda-org.github.io/vocabs-polmat/

w3id.org/rhonda/polmat/$1 [R=302,L]

The last line is the crucial one, defining what to redirect from with a regular expression (^polmat
/(.*) meaning a path component polmat, followed by “anything”) and where to redirect to as a
full webURL (in our case, that’s the rhonda‑org github pages site, with a variable$1 at the end, where
the “anything” extracted from the original request is inserted). Note that the whole requestmatching
expression isappended to themainw3iddomainplusapath component reflecting thew3id subfolder:
Our example file resides in a folder calledrhonda, so the rewrite rule wouldmatch everything begin‑
ningwith “https://w3id.org/rhonda/polmat/”. The expression in square brackets at the endof the line
defines the status of the redirection: the HTTP status code 302 (“FOUND” instructs clients to re‑post
their request at the new URL, but to keep the original url as the canonical address for the resource in
their bookmarks and databases. The L tells the webserver that this is the last rule and if it matches,
no further rules should be processed. (This way, you can have several rules and only the first one that
matches will be executed.)

So, it should be relatively easy to adapt this file to your own needs/domain: You have to figure out
how your “project” should be called in the w3id context (that will be the first path component of your
persistentURLs), createacorresponding folder, copy thecontentsabove intoa file called.htaccess
in this folder (note the leading dot in the filename), and specify redirection source and destination for
your vocabulary.

What remains to be done now is integrating this with the configuration of themain w3id site. For this,
we rely on another feature of the GitHub platform…

Another git/GitHub feature: forking and merging repositories As has been mentioned, git is a
decentralized version control system, meaning every copy has the same “authority” and when one
copy is lost, changes can be synchronized with any of the other copies. This facilitates collaboration,
but it still does not settle the question who has write access to your project. In the spirit of Free and
OpenSource Software, youwouldwant everybody to be able tomake a copyof your code and adapt it

38

https://httpd.apache.org/
https://en.wikipedia.org/wiki/.htaccess
https://en.wikipedia.org/wiki/Regular_expression
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

to their needs, but in order to feed back useful those changes into your own codebase, youmost likely
donotwant to give everybodywrite access to your repository. For sucha scenario, forking is a strategy
that is frequently used, but it presupposes a platform on which different projects can exchange code
updates:

Image 20. GitHub Forks.

If you visit any project on GitHub, you will see a button “Fork” in the upper right corner (box 1 in the
screenshot) and if you click on the button (on the text “Fork”), you will create a copy of the repository
in your ownaccount. (The number on the “Fork” button tells you howmany users have already pulled
a copy of the repository into their own namespace. If you click on the number instead of on the text
“Fork”, you will be taken to a list of these copies.)

If you create a fork, it resides in your account or namespace and you are its owner, so when you clone,
branch, pull, push your code from this (i.e. your) repository, youwill have full access rights and cande‑
velop as if you had been the original creator. However, the platform remembers the relation between
your repository and the original one (see boxes 2 and 3). (Often, when discussing such a scenario,
your repository on the github platform is called the “origin” remote repository, and the repository
you had forked from is called the “upstream” remote repository.) What we will want to do is collect
information about how your fork has diverged from the upstream repository (this should be only your
project folder with the custom .htaccess file) and submit this to the upstreammaintainer so, that
they can “pull” the changes to their original codebase and deploy them to the redirection service run‑
ning at w3id.org. For this, the GitHub platformoffers you to open a “Pull Request” (for what it’s worth,
in GitLab this is called “merging” and a “Merge Request”).

39

https://en.wikipedia.org/wiki/Fork_(software_development)
https://github.com/

Image 21. A GitHub fork in relation to your repository.
Source: J.J. van Zundert

40

The process you need to perform now is this:

• Point your web browser to the original (“upstream”) w3id repository at https://github.com/per
ma‑id/w3id.org

• “Fork” it, i.e. push the fork button and you end up with a copy of the repository in your own
GitHub account

• Download or “clone” your fork locally
• Add a new folder with your project name, containing your custom .htaccess file (and per
good netiquette also add a REAMDE file).

• Commit and push your changes to the repository on GitHub
• (If it has been some time since you had forked, youmaywant tomake sure the rest of the repos‑
itory is up to date by clicking on “Fetch upstream” ‑ see box 4 in the screenshot above)

• Submit your changes to upstream: Click on “Contribute” and then on “Open Pull Request”

After some time, one of the upstream w3id maintainers will have a look at your request and either
approve (and pull the changes and subsequently close) the request or get back to youwith questions
to clarify or rectify something. Whatever it is, you will get a notification via the email address you had
registered your GitHub account with.

If the Pull request has been approved and merged successfully, you can test if the redirection works:
point your browser to https://w3id.org/yourproject/yourvocabulary/scheme.
html and see if you end up on your vocabulary’s web presence at github.io. (The last bit of the URL
depends on the identifier you are using for your conceptScheme in your SKOS file.)

It is important to have your concepts have these persistent URLS as their identifiers also in how they
are described in the SKOS file. Here, we are declaring a very short prefix : to correspond to the base
w3id address and then this prefix leads all references to concepts, conceptScheme etc.:

41

https://github.com/perma-id/w3id.org
https://github.com/perma-id/w3id.org
https://en.wikipedia.org/wiki/README

1 @prefix : <https://w3id.org/rhonda/polmat/> .
2
3 ...
4
5 :scheme a skos:ConceptScheme ;
6 dct:title "RHONDA Categories of Matters"@en ,
7 ...
8
9 :n0 a skos:Concept ;

10 skos:inScheme :scheme ;
11 skos:topConceptOf :scheme ;
12 skos:narrower :n01 ,
13 :n02 ;
14 ...
15
16 :n01 a skos:Concept ;
17 skos:inScheme :scheme ;
18 skos:broader :n0 ;
19 skos:narrower :n01.1so ,
20 ...
21
22 :n01.1so a skos:Concept ;
23 skos:inScheme :scheme ;
24 skos:broader :n01 ;
25 skos:narrower :n01.1so.1 ,
26 :n01.1so.2 ,
27 :n01.1so.3 ,
28 :n01.1so.4 ,
29 :n01.1so.5 ,
30 :n01.1so.6 ,
31 :n01.1so.7 .
32
33 etc.

(In the example code above, all the lines with labels, definitions and so on have been eliminated, so
you can see just how the : prefix works.)

DONE! Congratulations, you have created a classification scheme and published it as a website for
everybody to consult.

V. Integrating your Classification Scheme in Workflows

Now that you have your classification scheme built and deployed, we want to illustrate how such
resources can be used with two example workflows where the classification scheme plays a central
role. At present, almost all of the SKOS development and management tools require you to run your

42

own server in order to host your vocabulary, or to be allowed to upload your vocabulary onto such a
server that is being run andmaintenedby someone else. To someextent, we have alreadyworkedour
way around this by hosting our vocabulary on GitHub pages. However, we would like to integrate our
vocabulary more tightly into our workflows than to just point users to a website where the concepts
are explained. After all, it’s a digital resource and so far, it would be analogous to a dictionary on
our bookshelf. Instead, we would to have it more “at our fingertips” in the tools we are using in our
regularworkflows. Toachieve this, wewouldneedouronline vocabulary resource to respond to some
dedicated data exchange protocols, which, unfortunately, the hosting at GitHub pages does not do.

This final chapter will thus focus on ways of integrating your vocabulary in workflows by providing
it via an application programming interface (API) that your other tooling can interact with. One API
standard that is not necessarily connected to SKOS, but is particularly fitting for several integration
scenarios is the Reconciliation Service API.

As this is meant rather to illustrate how such a concept scheme (service) can be used in the context
of concrete scholarly workflows than to explain the context and setup of the workflows in detail, we
will briefly describe the steps necessary to integrate the vocabulary and show you how an integrated
workflow would look like, but we will more or less presuppose that the working environment has
otherwise alreadybeen set up. Formoredetailed informationabout themethodsused inour example
workflows, we will be referring you to other tutorials.

We will present two example workflows, both of which rely on another free platform, supporting the
data exchange protocol mentioned above: The skohub developers (staff at North Rhine‑Westphalian
Library ServiceCentre) have a companion to skohub‑vocabs called skohub‑reconcile, which can serve
a Reconciliation API for a SKOS scheme submitted. And they even have a server where anybody can
submit their vocabulary (in turtle SKOS format) to have it served via Reconciliation API. Be aware
that this is currently in alpha status and it is quite likely that the service will eventually migrate to
another address/domain. But we expect few problems in the actual operation, andwith the w3id.org
redirection we have already seen how we can respond to the service moving to another URL. The
ability to respond to GitHubwebhooks is on the roadmap for the service, too, so youmay at one point
have a fully automated, always up‑to‑date reconciliation service for your vocabulary. Hopefully other
SKOS platforms (and working enviroment tools) will start supporting the reconciliation API so that
choices will becomemore numerous and diverse. To the best of our knowledge, though, the skohub
initiative is the only one where hosting is included and you don’t have to run your own server. (You
might try to get in touchwith the SSH Vocabulary Commons project and ask themabout hosting your
vocabulary, though, too).

Preparation: Offer your vocabulary via Reconciliation API with skohub‑reconcile

Reconciliation means to align your dataset with an external (authority) resource, in order to either

43

https://reconciliation-api.github.io/specs/latest/
https://github.com/skohub-io/skohub-reconcile
https://vocabs.sshopencloud.eu/
https://docs.openrefine.org/manual/reconciling

consistently use the normalized terms of your vocabulary everywhere in your dataset, or directly use
theunique identifiersprovidedby theauhtoritydatabase inplaceof the termsexclusively. Historically,
Thedatacleaning toolOpenRefine (or FreebaseGridworks thatwould laterbecomeOR)haspioneered
the development of a communication protocol for this purpose: You’d need a standardized way of
asking the authority database “what entries do you have that match the string ‘abcde’ in some way?”
and a standardized way for the database to reply “I have four entries, which I am listing here along
with their ID and their type (person/book/concept/place)…”. Soon, many databases supported the
way OpenRefine was asking such things and the form in which it would expect answers. Since 2019,
this communication protocol has been maintained and developed by a W3C community group as an
independent API specification. A long list of databases that support queries via reconciliation API can
be found in the Reconciliation API testbench (at the time of writing, this list has almost 50 entries),
and clients capable of dispatching such queries as well as libraries facilitating the development of
such clients are listed in the Reconciliation census.

All the authority files we mentioned above offer a reconciliation API and thus can be used to match
your data with. However, we are interested in providing a reconciliation API endpoint for or our own
vocabulary, thus enabling users from various projects to use their clients to access our controlled
vocabulary. For this, we go to https://reconcile‑publish.skohub.io/index.html, enter an account
name (this is to help distinguish between several users submitting concept schemes that happen to
have the same identifier), a main language and select our turtle file for uploading:

44

https://openrefine.org/
https://www.w3.org/community/reconciliation/
https://reconciliation-api.github.io/specs/latest/
https://reconciliation-api.github.io/testbench/
https://reconciliation-api.github.io/census/
https://reconcile-publish.skohub.io/index.html

Image 22. Skohub‑reconcile: Prepare to upload.
Source: https://reconcile‑publish.skohub.io/

After we push the “Upload File to Reconcile Service!” button and wait a few minutes, we get a confir‑
mation screen with the URL for the reconciliation service based on our vocabulary:

45

https://reconcile-publish.skohub.io/

Image 23. Skohub‑Reconcile: Upload done.
Source: https://reconcile‑publish.skohub.io/

In the URL, you can see that account name and language reappear and the dataset parameter is the
URI for the conceptScheme (resulting from the expanded prefix and the identifier) in our SKOS file.
Yours might obviously have different values there. In the following two example workflows, we will
thus be using this reconciliation service for the matters of police ordinances vocabulary, available at
http://reconcile.skohub.io/reconcile?language=de&account=rhonda&dataset=https://w3id.org/rho
nda/polmat/scheme.

Workflow 1: Reconciling a dataset with OpenRefine

As Seth van Hooland, Ruben Verborgh and Max De Wilde have shown in their Programming Historian
tutorial on Cleaning Data with OpenRefine, the OpenRefine tool is easy to use in order to clean data
of various types of datasets. You can do this with regular expressions, the General Refine Expression
Language (GREL) or Jython but you can use the built‑in features of the GUI as well. However, van

46

https://reconcile-publish.skohub.io/
http://reconcile.skohub.io/reconcile?language=de&account=rhonda&dataset=https://w3id.org/rhonda/polmat/scheme
http://reconcile.skohub.io/reconcile?language=de&account=rhonda&dataset=https://w3id.org/rhonda/polmat/scheme
https://programminghistorian.org/en/lessons/cleaning-data-with-openrefine
https://programminghistorian.org/en/lessons/cleaning-data-with-openrefine
https://docs.openrefine.org/manual/grel
https://docs.openrefine.org/manual/grel
https://docs.openrefine.org/manual/jythonclojure

Hooland et al. mention OpenRefine’s reconciliation function only in passing. In this section, you will
learn how to reconcile your data with your controlled vocabulary, i.e. to make sure all the relevant
values in your dataset conform to andmake use of the controlled vocabulary and its concept PIDs.

If you have not already done so,

• download the most recent openrefine zip from https://github.com/OpenRefine/OpenRefine/r
eleases

• extract it, and then in the resulting folder,
• run the openrefine executable (refine.bat if you are on MSWindows, refine otherwise)
• open your browser and navigate to OpenRefine’s user interface at http://127.0.0.1:3333/

Before startingwith reconciliation, youmaywant to have a quick check of the data and, depending on
whether the reconciliation data source supports fuzzy searches or not, make sure that the spelling of
your words is uniform. For such initial data profiling and cleaning, we refer you to the Cleaning Data
with OpenRefine tutorial.

But now, let’s start reconciling your data. This you candoper columnagain, by going to thedropdown
menu of the respective column (we will use column “Scope_clean 2” in the screenshots) and then go
to the “Reconcile”‑menu. Here you can chose to ‘Start Reconciling’.

Image 24. Start Reconciling.

47

https://github.com/OpenRefine/OpenRefine/releases
https://github.com/OpenRefine/OpenRefine/releases
http://127.0.0.1:3333/
https://programminghistorian.org/en/lessons/cleaning-data-with-openrefine
https://programminghistorian.org/en/lessons/cleaning-data-with-openrefine

In the following menu, you have two options. Either you choose one of the available services (left
field) or you click on the “add standard service”. OpenRefine has already a few built‑in options, but
you can add other trusted (by you) services that follow the Reconciliation API protocol.

Image 25. Add a reconciliation service.

First, we will show you how you can reconcile placenames. When you have clicked on the ‘wikidata
reconci.link(en)’ you are immediately offered some suggestions, based upon your column’s content.
You can restrict the types of entities that should be taken into account, specify additional columns
holding information that might be helpful in deciding uncertain cases (e.g. the country columnwhen
you are reconciling places, or the birthdate columnwhen you are reconciling persons), and tell Open‑
Refine to skip creating a menu for you to pick one of multiple candidates when the match is already
quite unambiguous. In this screenshot, we are tellingwikidata to return entries that are Swissmunici‑
palities, to consider data in the “Scope_clean 3” column for finding goodmatches, and to indeed skip
creating a menu whenmatches are unambiguous (“Auto‑match candidates with high confidence”):

48

Image 26. Auto‑match candidates against geographical locations (examplemuniciplity of Switzerland).

After selecting all these options and clicking on Start ReconciliationOpenRefine ismatching the listed
names. The result is shown in the next image:

49

Image 27. Reconciliation results ‑ with geographical references.

The upper, right‑facing green arrow points to information about how much of the column has been
matched against the chosen autority files. In this case, the bar indicates that about 58% could be
matched against wikidata records and about 42% still needs reconciliation. When you hover your
mouse cursor over the hyperlink of one of the places that has beenmatched, youwill see a preview of
the wikidata record this has been matched to, as well as the ID‑number of the autority file (“Q70” for
Berne, in this case).

In caseswherenosufficientlyunambigousmatchwasavailable, orwhere therewasahighuncertainty,
OpenRefine provides suggestions, such as the candidates for “Aargau” here. With these suggstions,
you can define whether the value in the current row corresponds to one of the entries (the checkbox
with the single checkmark icon), or whether all the entries in all the rows that have the same value
(“Aargau”) should be linked to the corresponding suggestion (the checkbox with the double check‑
marks icon):

50

Image 28. Suggested reconciliation candidates.

We can see that places that are not Swiss municipalities have not been matched and also do not
appear as candidates. Had we selected “administrative territorial entity” in the reconciliation
options above, “Aargau” might have been matched directly. If the table included cities from other
countries, “municipality of Switzerland” would have been too restrictive, too; and if it included
non‑administrative geographical regions like the Black Forest, even “administrative territorial entity”
may not be tolerant enough and we should have chosen “Location” or even “Reconcile against no
particular type” (N.B. Aargau is a Canton these days, but was a regionwithin Berne back in the period
this data comes from).

For the clarity of your database, youmaywant to consider addinganadditional columnwith the entity
identifiers (like “Q70” in our example). By going to Reconcile in the column’s drop‑down menu, you
can click on Add entity identification column:

51

Image 29. Add entity identification column.

You are asked to provide a name for this new column:

52

Image 30. Add column containing entity identifiers ‑ New column name.

And consequently the entity identifications are shown in the column next to the original. Here you see
that Zolfingen has the ID: Q63986 in Wikidata Swiss Municipalities:

53

Image 31. Entity identifiers.

You can find more helpful information about data reconciliation with OpenRefine, including more
advanced aspects like adding data from authority databases to your tables, or using reconciliation
facets, in these resources: Chapter “5 Hands‑on: Reconciliation” in John Little’s “Cleaning Data with
OpenRefine” Workshop, the Getty Vocabularies OpenRefine Tutorial, and of course the OpenRefine
Manual.

Now, while geographical locations can be considered a restricted vocabulary, they are not the classi‑
ficaton schemewe have built and published earlier. But thematters‑columns (the topics) of our early
modern ordinances can be matched to our own created classification scheme. Here the same princi‑
ples are at work, though you cannot chose a standard available service but have to add our custom
reconciliation endpoint as a new reconciliation service to OpenRefine. Oncewe have created the new
reconciliation service inOpenRefine, all the other steps described above then apply to our vocabulary
in very much the same way. So, we only have to make our vocabulary reconciliation service known
to OpenRefine…

Wedo this by going to the dropdownmenuof the columnwewant to reconcile against our vocabulary
(in this case “Matter_1”), select “Reconcile” and then “Start reconciling”.

54

https://libjohn.github.io/openrefine/hands-on-reconciliation.html
https://libjohn.github.io/openrefine/index.html
https://libjohn.github.io/openrefine/index.html
https://www.getty.edu/research/tools/vocabularies/obtain/openrefine.html
https://docs.openrefine.org/manual/reconciling
https://docs.openrefine.org/manual/reconciling

Image 32. Reconciliation against taxonomy.

Again, we are presented the the list of available services:

55

Image 33. Reconciliation services.

Clicking on “Add Standard Service…” in the lower right corner takes us to a dialogue where
we can enter the service’s URL. In our case, that would be https://reconcile.skohub.
io/reconcile?account=rhonda&dataset=https://w3id.org/rhonda/polmat
/scheme, or, since our “Matter_1” and all the other entries are in German, even better enter
https://reconcile.skohub.io/reconcile?account=rhonda&dataset=https://
w3id.org/rhonda/polmat/scheme&language=de with a German language tag attached to
the URL (&language=de).

56

Image 34. Entering own service’s URL.

Clicking on “Add service” will have OpenRefine query the service and see what type of entities it can
offer for the values in our “Matter_1” column. In this case, the service can offer only “Concept” (and
“ConceptScheme”) type entries anyway, so this is what we are being offered in the reconciliation op‑
tions:

Image 35. Reconcile Concepts.

57

(In this example, we can specify that another column called “Materia” holds information that may be
helpful for deciding ambiguous cases.)

After clicking on “Start Reconciling…” andwaiting a bit for the lookups to settle, we end upwithmost
of the entries being successfully mapped and replaced with the preferred label stored in the vocabu‑
lary:

Image 36. Reconciled Matters example.

Going to the “Matter_1” dropdownmenu and the “Reconciliation” item again, we can also tell Open‑
Refine to “Add entity identifiers column”. Then it will ask us for a name for this column, and we end
up with an additional column holding the concept identifiers that our authority database holds.

58

Image 37. Additional column with identifiers.

Doing the same for the “Materia” column (which containsmore general terms), we get our final result,
withPIDs available for thematters in our table. If later, webuild aproper databaseout of our table and
want tooffermultilingual interfaces for it, wecoulduse these IDs topresent the terms in the respective
current language of the user interface (provided our vocabulary has all the necessary translations).

59

Image 38. Reconciling additional columns.

Workflow 2: Annotating full text with TEI Publisher

Abasicmethod inhumanitiesorhistorical projects is annotating somesource textwith tagsandvocab‑
ulary relevant to your research question (cf. Nantke/Schlupkothen 2020). For this, many annotation
platforms are available, but we will focus on TEI Publisher as an example because of two points: it
allows you to annotate TEI‑XML encoded full‑text documents without taking you away from this for‑
mat; and it can get its annotation data from an authority database that offers a Reconciliation API. In
other words, you can annotate with all the authority databases we have mentioned, plus your own
classification scheme.

There is a public playground available where you can try out the annotation tools, too. However, we
need to change some configuration and code files that cannot bemanipulated in this playground, so
we have to assume you have set up a TEI Publisher server for your project.

The TEI Publisher documentation describes the configuration of annotation using authority lookups
quitewell, butwebriefly resume it here, addingdetails about our vocabulary servicewherenecessary.
We need to:

a. edit the templates/pages/annotate.html file so that the annotation page has buttons
for accessing our vocabulary service,

b. edit the modules/annotation-config.xqm file to explain how our new type of annota‑
tion should appear in the TEI XML source files, and

60

https://doi.org/10.1515/9783110689112
https://teipublisher.com/index.html
https://teipublisher.com/exist/apps/tei-publisher/doc/documentation.xml?odd=docbook.odd&id=web-annotations
https://teipublisher.com/exist/apps/tei-publisher/
https://teipublisher.com/exist/apps/tei-publisher/index.html?tab=0&collection=annotate
https://teipublisher.com/exist/apps/tei-publisher/doc/documentation.xml?odd=docbook.odd&id=web-annotations&root=3.39.12

c. edit the ODD file in order to define how the annotations should be rendered in web views (nor‑
mally, we would do this in the resources/odd/annotations.odd file, but if want the
rendering instructions to apply to all the views, and not just to the annotation view, then we do
this in the resources/odd/teipublisher.odd file).

In TEI Publisher’s own source code editor, eXide, open the file templates/pages/annotate.
html and find the passage where it says:

1 <main>
2 <aside class="annotation-editor">
3 <div class="toolbar">

with lots of <paper-icon-button .../> entries in it. These are the various buttons for the tool‑
bar, and you should add an entry like the following to where you see fit:

1 <paper-icon-button class="annotation-action authority" data-i18n="[
title]AZ_Polmat" title="Policey matter" data-type="polmat" icon="
icons:android" data-shortcut="mac+shift+r,ctrl+shift+p" disabled="
disabled"/>

The class="annotation-action authority" specifies that this component represents an
annotation action using an authority database lookup. The type="polmat" bit is important too,
as it links the component to the configuration instructions that we will discuss in the next step. You
can choose a suitable icon from https://kevingleason.me/Polymer‑Todo/bower_components/iron‑
icons/demo/index.html, we chose the android droid for simplicity’s sake.

Next, find the passage with

1 <paper-dialog id="authority-dialog">
2 <paper-dialog-scrollable>
3 <pb-authority-lookup subscribe="transcription" emit="

transcription">

This is where the configuration of authority lookups goes. Add an entry like the following:

1 <pb-authority connector="ReconciliationService" debug="debug" prefix="
polmat" name="polmat" endpoint="https://reconcile.skohub.io/
reconcile?account=rhonda&dataset=https://w3id.org/rhonda/polmat/
scheme&language=de"/>

Theconnector="ReconciliationService"bit specifies that the authority database uses the
Reconciliation API, the endpoint gives the service URL, the prefix controls how the ID of the an‑
notated concept will be coded in some TEI attribute, and the name bit is what the button component
above was referring to. Save the file in eXide.

61

https://kevingleason.me/Polymer-Todo/bower_components/iron-icons/demo/index.html
https://kevingleason.me/Polymer-Todo/bower_components/iron-icons/demo/index.html

Next, open the file modules/annotation-config.xqm in eXide and find the passage

1 declare function anno:annotations($type as xs:string, $properties as
map(*), $content as function(*)) {

2 switch ($type)

Add a new entry like the following:

1 case "polmat" return
2 <term xmlns="http://www.tei-c.org/ns/1.0" type="polmat" ref="{

$properties?ref}">{$content()}</term>

This defines how lookup results from the annotation mechanism will be encoded in the TEI files: We
see that whatever is selected in the annotation view (the $content) is wrapped in a <term> ele‑
ment, the @ref attribute of which will contain what the lookup has returned as its ref. Again, save
the file, and if you will, close the eXide editor.

Finally, we need to define how our new <term type="polmat"/> elements should be rendered
in the display: from one of the pages in your TEI Publisher, click on the “Admin” menu at the top and
select the “Edit ODD: teipublisher.odd” entry. This will take you to TEI Publisher’s ODD editor GUI.
If then there is no “term” entry in the “Element Specs” list on the left, enter term below the “Add
Element” prompt and click on the plus icon. If there is one, click on the “term” option in the list on
the left.

Click on the plus icon in the upper right corner to create a new rendering instruction for “term” ele‑
ments, select “model” and fill in the following details:

• Output: web (as we will create some interactive stuff that will not work in pdf or other formats)
• Predicate: @type="polmat" (so that this will apply only to the new term elements identifi‑
able by this type, and not to others)

• Behaviour: alternate (this provides a tooltip on hover, according to the documentation)
• CSS class: annotation annotation-term annotation-polmat (allows CSS styling
to apply to our polmat term elements)

• Click on the plus icon to create the following parameters:

– “default”: . (content to display by default, i.e. what text had been selected in annotation)
– “persistent”: false() (activates the hover popup. If true(), a persistent popup is
shown when the element is clicked on)

– “alternate”: concat("Concept: ", ./@ref) (this is what is printed inside the
popup. In this case, it’s the concept ID with the prefix configured above and an explana‑
tory “Concept:” label attached in front.)

• In renditions, just add text-decoration: underline solid violet 3px; or what‑
ever other formatting you want to apply to the annotation.

62

https://teipublisher.com/exist/apps/tei-publisher/doc/documentation.xml?odd=docbook.odd&id=behaviours-available&root=3.39.12

Image 39. ODD instructions for rendering polmat‑type terms.

Click on the Save icon near the “teipublisher.odd” title on the upper left and wait until TEI publisher
has created the actual rendering functions from your ODD file. Then you can close the ODD editor,
too.

Now, when you open a document in TEI Publisher and select the “Annotation Editing” view in the
“hamburger”/settings menu on the upper right, you will be taken to the annotation view with your
new annotation button waiting in the toolbar. Selecting a term like “Erkrankte” in the main text area,
the buttons become available for clicking, but clicking on the android icon takes us to an empty list,
indicating that the vocabulary has no entry for “Erkrankte”. However, if we change the text in the
popup’s search field to “krank” and click on the search icon, the list is updated with two candidates
“Kranke / Krankheiten” and “Krankenwärter”. Clicking on the candidates’ entries themselves takes
us to the respective term’s “homepage”, but clicking on the plus icon near a candidate will insert the
annotation.

63

Image 40. Reconciliation results for annotation.

If we click on one of the annotations in the text, a popup shows a preview of the concept (image 41,
box 1) so that we can get more information and eventually verify we have the correct entry. Also, on
the left we are offered a list of all occurrences of the character sequence we have just selected and
annotated, so if wewant to tag all of them, we can do so easily (image 41, box 2). Also you can inspect
the html preview and the TEI preview on the right (image 41, box 3):

Image 41. View of annotations in web view and TEI.

If you are happywith the annotation, click the save button in themenu on the right and you are done.
You can use the categories of your classification scheme in a flexible environment and in an efficient
workflow for annotating TEI XML full text documents.

Conclusion

The twoexampleworkflows should have given you an idea of how taxonomies canbeused in a variety
ofworkflows. This chapter should also havedemonstrated inwhich sense integrationof a (normative)
conceptual resource suchasa taxonomy intoaprojectmeansmore thanan intellectual resolutionand
good ideas aboutwho doeswhat: it alsomeans finding good tools and tuning them to aworkflow – in
the case of a collaborative project, configuring networked resources and services so that everyone’s
tool can benefit from and contribute to the intellectual efforts. Again it shows that an authority file

64

– this is what our taxonomy functions as – means a combination of intellectual resource, social con‑
vention and networked infrastructure and foregoing any of these three aspects risks diminishing the
success of the endeavour.

VI. Further Reading and Resources

Literature

• Almeida, Bruno/Costa, Rute/Medeiros, Filipa (eds., 2021a): Controlled vocabularies and
knowledge organisation for the digital humanities: proceedings. Lisbon: NOVA FCSH/CLUNL.
DOI:10.34619/pgtp‑upne.

• Almeida, Bruno/Freire, Nuno/Salgueiro, Ângela/Monteiro, Daniel (2021b): “The ROSSIO vo‑
cabularies: development and publication as linked open data”, in: Almeida, Bruno/Costa,
Rute/Medeiros, Filipa (eds.): Controlled vocabularies and knowledge organisation for the digital
humanities: proceedings. Lisbon: NOVA FCSH/CLUNL, 2021. DOI:10.34619/pgtp‑upne.

• Autiero, Serena/Elwert, Frederik/Moscatelli, Cristiano/Pons, Jessie (2023): “The Seven Steps:
Building the DiGA Thesaurus”, in: Journal of Open Humanities Data 9. DOI:10.5334/johd.111.

• Durost, Sébastien/Reich, Guillaume/Girard, Jean Pierre (2021): “Vocabulaires de recherche, vo‑
cabulaire contrôlé et modèle de données: une chaîne opératoire pour le partage de données
archéologiques”, in: Almeida, Bruno/Costa, Rute/Medeiros, Filipa (eds.): Controlled vocabular‑
ies and knowledge organisation for the digital humanities: proceedings. Lisbon: NOVA FCSH/‑
CLUNL, 2021. DOI:10.34619/pgtp‑upne.

• Edmond, Jennifer/Benito Santos, Alejandro/Doran, Michelle/Kozak, Michał/Mazurek,
Cezary/Wandl‑Vogt, Eveline/Rocha Sepulveda, Aleyda (2023): “Making the Whole Greater
than the Sum of its Parts: Taxonomy Development as a Site of Negotiation and Compromise
in an Interdisciplinary Software Development Project”, in: Gerstorfer, Dominik/Gius, Evelyn/‑
Jacke, Janina (eds.) Digital Humanities Quarterly 17(3) Special Issue on “Categories in Digital
Humanities”. http://www.digitalhumanities.org/dhq/vol/17/3/000701/000701.html.

• Ernst, Marlene/Gassner, Sebastian/Gerstmeier, Markus/Rehbein, Malte (2023): “Categorising
Legal Records – Deductive, Pragmatic, and Computational Strategies”, in: Gerstorfer, Do‑
minik/Gius, Evelyn/Jacke, Janina (eds.) Digital Humanities Quarterly 17(3) Special Issue on
“Categories in Digital Humanities”. http://www.digitalhumanities.org/dhq/vol/17/3/000708/00
0708.html.

• Gerstorfer, Dominik/Gius, Evelyn/Jacke, Janina (2023): “Working on and with Categories for
Text Analysis. Challenges and Findings from and for Digital Humanities Practices” (Editorial), in:

65

https://doi.org/10.34619/pgtp-upne
https://doi.org/10.34619/pgtp-upne
https://doi.org/10.5334/johd.111
https://doi.org/10.34619/pgtp-upne
http://www.digitalhumanities.org/dhq/vol/17/3/000701/000701.html
http://www.digitalhumanities.org/dhq/vol/17/3/000708/000708.html
http://www.digitalhumanities.org/dhq/vol/17/3/000708/000708.html

Gerstorfer, Dominik/Gius, Evelyn/Jacke, Janina (eds.) Digital Humanities Quarterly 17(3) Spe‑
cial Issue on “Categories in Digital Humanities”. http://www.digitalhumanities.org/dhq/vol/17
/3/000704/000704.html

• Goulis, Helen (2021): “The BBT meta‑thesaurus model: building interoperable thesauri for hu‑
manities researchers”, in: Almeida, Bruno/Costa, Rute/Medeiros, Filipa (eds.): Controlled vocab‑
ularies and knowledge organisation for the digital humanities: proceedings. Lisbon: NOVA FC‑
SH/CLUNL, 2021. DOI:10.34619/pgtp‑upne.

• Guarino, Nicola/Oberle, Daniel/Staab, Steffen (2009): “What is an ontology?”, in: Steffen Staab,
Rudi Studer (eds.): Handbook on Ontologies. Berlin: Springer, 2009: 1‑17. DOI:10.1007/978‑3‑
540‑92673‑3_0 (also: https://iaoa.org/isc2012/docs/Guarino2009_What_is_an_Ontology.pdf).

• Kless, Daniel/Milton, Simon/Kazmierczak, Edmund/Lindenthal, Jutta (2015): “Thesaurus and
ontology structure: Formal and pragmatic differences and similarities”, in: Journal of the Asso‑
ciation for Information Science and Technology 66: 1348‑1366. DOI:10.1002/asi.23268.

• Nantke, Julia/Schlupkothen, Frederik (eds., 2020): Annotations in Scholarly Editions and Re‑
search. Functions, Differentiation, Systematization. Berlin: DeGruyter. DOI:10.1515/9783110689112.

• Nijman, Brecht/Pepping, Kay (2023): “Building a VOCabulary: the uses and challenges of the‑
sauri for working with early modern recognized entities”. Abstract for a paper presented at
DHBenelux 2023. DOI:10.5281/zenodo.7973694. (See other resources from the project at https:
//globalise.huygens.knaw.nl/output/.)

• SEMIC (2009): “Guidelines and good practices for taxonomies”, Report of the Semantic Interop‑
erability Centre Europe, version 1.3. https://publica.fraunhofer.de/handle/publica/294684.

• Zeng, Marcia Lei/Chan, Lois Mai (2004): “Trends and issues in establishing interoperability
among knowledge organization systems”, in: Journal of the American Society for Information
Science and Technology (JASIST) 55(5): 377‑395. DOI:10.1002/asi.10387.

• Zeng, Marcia Lei (2019): “Interoperability”, in: Knowledge Organization 46(2): 122‑146. Also
available in Hjørland, Birger and Gnoli, Claudio (eds.): ISKO Encyclopedia of Knowledge Organi‑
zation, https://www.isko.org/cyclo/interoperability

Software and Platforms

Git

• git source‑control management
• GitHub Platform
• GitLab Platform
• BitBucket Platform
• git cheat sheet, including user information set up

66

http://www.digitalhumanities.org/dhq/vol/17/3/000704/000704.html
http://www.digitalhumanities.org/dhq/vol/17/3/000704/000704.html
https://doi.org/10.34619/pgtp-upne
https://doi.org/10.1007/978-3-540-92673-3_0
https://doi.org/10.1007/978-3-540-92673-3_0
https://iaoa.org/isc2012/docs/Guarino2009_What_is_an_Ontology.pdf
https://doi.org/10.1002/asi.23268
https://doi.org/10.1515/9783110689112
https://doi.org/10.5281/zenodo.7973694
https://globalise.huygens.knaw.nl/output/
https://globalise.huygens.knaw.nl/output/
https://publica.fraunhofer.de/handle/publica/294684
https://doi.org/10.1002/asi.10387
https://www.isko.org/cyclo/interoperability
https://git-scm.com/
https://github.com/
https://gitlab.com/
https://bitbucket.org/
https://education.github.com/git-cheat-sheet-education.pdf

Code Editors

• BBEdit
• Notepad++
• SublimeText
• TextMate [MAC only]
• Visual Studio Code
• Free Online Turtle Editor (1): http://onto.fel.cvut.cz/turtle‑editor/turtle‑editor.html
• Free Online Turtle Editor (2): https://felixlohmeier.github.io/turtle‑web‑editor/

SKOS

• Host a SKOS resource:

– SkoHub.io

* blog

* github repositories

* skohub‑vocabs repo

* skohub‑docker‑vocabs repo

* skohub‑reconcile repo

* polmat Vocabulary (browse)

* polmat Vocabulary (source)

* polmat GitHub Workflow file

– SSH Vocabulary Commons

• Manage a SKOS resource:

– Skosmos
– VocBench
– iQvoc
– OpenTheso
– UniLex

• Test and visualise SKOS thesaurus: Sparna Playground

• clean SKOS thesaurus: Skosify

• Directories of thesauri, classification schemes etc. (search for relatedones, consider submitting
yours):

– Basic Register of Thesauri, Ontologies & Classifications (BARTOC)
– Linked Open Vocabularies

67

https://www.barebones.com/products/bbedit/
https://notepad-plus-plus.org/
https://www.sublimetext.com/
https://macromates.com/
https://code.visualstudio.com/
http://onto.fel.cvut.cz/turtle-editor/turtle-editor.html
https://felixlohmeier.github.io/turtle-web-editor/
https://skohub.io/
https://blog.skohub.io/
https://github.com/skohub-io/
https://github.com/skohub-io/skohub-vocabs
https://github.com/skohub-io/skohub-docker-vocabs
https://github.com/skohub-io/skohub-reconcile
https://w3id.org/rhonda/polmat/scheme
https://github.com/rhonda-org/vocabs-polmat/
https://github.com/rhonda-org/vocabs-polmat/blob/main/.github/workflows/main.yml
https://vocabs.sshopencloud.eu/
http://www.skosmos.org/
http://vocbench.uniroma2.it/doc/
https://iqvoc.net/
https://opentheso.hypotheses.org/
https://github.com/fmalina/unilex
https://skos-play.sparna.fr/play/
https://skosify.readthedocs.io/en/latest/
http://bartoc.org/
https://lov.linkeddata.es/dataset/lov/

– Social Sciences & Humanities Open Cloud (SSHOC) Vocabulary Commons
– Vocabularies hosted at the Austrian Center for Digital Humanities

• BARTOC’s list of software for controlled vocabularies

• Search for prefixes: prefix.cc

• Using SKOS:Concept Wiki article: http://ontologydesignpatterns.org/wiki/Community:Using_
SKOS_Concept

• The Accidental Taxonomist (Blog)

Persistent Identifiers

• w3id.org

– w3id github repository
– help for git squash

• purl.org

– archive.org

Data Cleaning / OpenRefine

• OpenRefine

Annotation / TEI Publisher

• https://newscatcherapi.com/blog/top‑6‑text‑annotation‑tools
• TEI Publisher

Acknowledgements

This tutorial is based on a workshop provided to participants of the 2021 Linked Pasts Conference #7
(Ghent). It has been revised for the Journal for Digital Legal History ‑ Special Issue “Gute Policey” and
police ordinances: local regimes and digital methods (2023)’.

Funding: CARwas fundedbyapostdoctoral fellowship fromtheDutchResearchCouncil/Nederlandse
Organisatie voor Wetenschappelijk Onderzoek [VI.Veni.191H.035].

68

https://vocabs.sshopencloud.eu/browse/
https://vocabs.acdh.oeaw.ac.at/en/
https://github.com/gbv/bartoc.org/wiki/Software-for-controlled-vocabularies
http://prefix.cc/about
http://ontologydesignpatterns.org/wiki/Community:Using_SKOS_Concept
http://ontologydesignpatterns.org/wiki/Community:Using_SKOS_Concept
https://accidental-taxonomist.blogspot.com/
https://w3id.org/
https://github.com/perma-id/w3id.org
https://www.git-tower.com/learn/git/faq/git-squash/
http://purl.org/
https://archive.org/
https://openrefine.org/
https://newscatcherapi.com/blog/top-6-text-annotation-tools
https://teipublisher.com/exist/apps/tei-publisher/index.html?tab=0&collection=annotate

Author contributions: Conceptualisation: C.A.R., A.W.; Formal analysis: C.A.R., A.W., J.J.v.Z.; Re‑
sources: C.A.R., A.W., J.J.v.Z.; Methodology: C.A.R., A.W., J.J.v.Z.; Writing – original draft: C.A.R., A.W.,
J.J.v.Z;Writing – review and editing: C.A.R., A.W., J.J.v.Z..

Competing interests: the authors declare no competing interests.

About the Authors

• AnnemiekeRomein is a Post‑Doctoral Researcher at theHuygens Institute for history and culture
of the Netherlands in Amsterdam (the Netherlands).

• Andreas Wagner is Digital Humanities Officer at the Max Planck Institute for Legal History and
Legal Theory in Frankfurt am Main (Germany) and a researcher for the project “The School of
Salamanca. A digital collection of sources and a dictionary of its juridical‑political language” of
the Academy of Sciences and Literature | Mainz (Germany).

• Joris van Zundert is a Senior Researcher and Developer at the Huygens Institute for history and
culture of the Netherlands in Amsterdam (the Netherlands).

69

	Deploying
	Building and Deploying a Classification Schema using Open Standards and Technology
	10.21825/dlh.85751
	Legal History, Taxonomy, Tools, RHONDA, Tutorial, git, SKOS, GitHub pages, GitHub actions, Taxonomy, Tools, RHONDA, Tutorial, Git, SKOS, Reconciliation, GitHub pages, GitHub actions
	This tutorial fully introduces Building and Deploying a Classification schema using Open Standards and Technology. Beyond accessing the command line, no prior knowledge is assumed as all the steps are described in detail. However, the tutorial will take you through some more complex technical steps. To profit best from the example workflows of the last chapter, it is good to know how to work with OpenRefine and/or have a TEI Publisher server set up to play around with. With this tutorial, you the reader should gain an understanding of: what different classification schemes can contribute to your project, what to pay attention to when building a classification scheme, how to code the classification scheme (in SKOS), how to publish the classification scheme (on GitHub pages), what some possible scenarios of using classifications schemes in actual project workflows are.

	Building and Deploying_20230828_xelatex-eisvogel
	Building and Deploying a Classification Scheme using Open Standards and Free Platforms
	Contents
	Introduction and Scope
	Pre-requisites and requirements
	How difficult is this tutorial?
	Scholarly case study: Police Ordinances

	I. Classification Schemes and (as) Interoperable Data
	Interoperability and controlled vocabularies
	(Types of) controlled vocabularies
	Taxonomy classification schemes
	Authority data (providers)
	So why would you want to use a classification scheme?

	II. Building Your Own Classification Scheme
	Steps and considerations (a)
	Steps and considerations (b)
	What is SKOS and how to encode your scheme?

	III. Introduction to Basic git Commands and GitHub Features
	Setting up a GitHub repository
	Setting up the local repository
	Communicating between repositories
	Your first push to a repository
	Updating from a repository
	Disciplining yourself: creating the routine
	Collaborating with others on your repository

	IV. Deploying your Classification Scheme
	Building your files automatically with GitHub Actions and the skohub-vocabs Docker image
	Publishing your classification scheme with GitHub Pages
	Creating Persistent Identifiers with w3id.org

	V. Integrating your Classification Scheme in Workflows
	Preparation: Offer your vocabulary via Reconciliation API with skohub-reconcile
	Workflow 1: Reconciling a dataset with OpenRefine
	Workflow 2: Annotating full text with TEI Publisher
	Conclusion

	VI. Further Reading and Resources
	Literature
	Software and Platforms

	Acknowledgements

